Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 20075, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625606

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and behavioral changes. Extracellular deposition of amyloid plaques (Aß) and intracellular deposition of neurofibrillary tangles in neurons are the major pathogenicities of AD. However, drugs targeting these therapeutic targets are not effective. Therefore, novel targets for the treatment of AD urgently need to be identified. Expression of the mesoderm-specific transcript (Mest) is regulated by genomic imprinting, where only the paternal allele is active for transcription. We identified hypermethylation on the Mest promoter, which led to a reduction in Mest mRNA levels and activation of Wnt signaling in brain tissues of AD patients. Mest knockout (KO) using the CRIPSR/Cas9 system in mouse embryonic stem cells and P19 embryonic carcinoma cells leads to neuronal differentiation arrest. Depletion of Mest in primary hippocampal neurons via lentivirus expressing shMest or inducible KO system causes neurodegeneration. Notably, depletion of Mest in primary cortical neurons of rats leads to tau phosphorylation at the S199 and T231 sites. Overall, our data suggest that hypermethylation of the Mest promoter may cause or facilitate the progression of AD.


Assuntos
Doença de Alzheimer/patologia , Metilação de DNA , Células-Tronco Embrionárias/patologia , Neurônios/patologia , Regiões Promotoras Genéticas , Proteínas/genética , Via de Sinalização Wnt , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Células-Tronco de Carcinoma Embrionário/metabolismo , Células-Tronco de Carcinoma Embrionário/patologia , Células-Tronco Embrionárias/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Neurônios/metabolismo , Fosforilação , Proteínas/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Front Mol Neurosci ; 14: 683196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177464

RESUMO

Shank2 is an abundant postsynaptic scaffolding protein that is known to regulate excitatory synapse assembly and synaptic transmission and has been implicated in various neurodevelopmental disorders, including autism spectrum disorders (ASD). Previous studies on Shank2-mutant mice provided mechanistic insights into their autistic-like phenotypes, but it remains unclear how transcriptomic patterns are changed in brain regions of the mutant mice in age- and gene dosage-dependent manners. To this end, we performed RNA-Seq analyses of the transcripts from the prefrontal cortex (PFC) of heterozygous and homozygous Shank2-mutant mice lacking exons 6 and 7 at juvenile (week 3) and adult (week 12) stages. Juvenile heterozygous Shank2-mutant mice showed upregulation of glutamate synapse-related genes, downregulation of ribosomal and mitochondrial genes, and transcriptomic changes that are opposite to those observed in ASD (anti-ASD) such as upregulation of ASD_down (downregulated in ASD), GABA neuron-related, and oligodendrocyte-related genes. Juvenile homozygous Shank2 mice showed upregulation of chromatin-related genes and transcriptomic changes that are in line with those occurring in ASD (pro-ASD) such as downregulation of ASD_down, GABA neuron-related, and oligodendrocyte-related genes. Adult heterozygous and homozygous Shank2-mutant mice both exhibited downregulation of ribosomal and mitochondrial genes and pro-ASD transcriptomic changes. Therefore, the gene dosage- and age-dependent effects of Shank2 deletions in mice include differential transcriptomic changes across distinct functional contexts, including synapses, chromatin, ribosomes, mitochondria, GABA neurons, and oligodendrocytes.

4.
Nat Commun ; 12(1): 2695, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976205

RESUMO

mTOR signaling, involving mTORC1 and mTORC2 complexes, critically regulates neural development and is implicated in various brain disorders. However, we do not fully understand all of the upstream signaling components that can regulate mTOR signaling, especially in neurons. Here, we show a direct, regulated inhibition of mTOR by Tanc2, an adaptor/scaffolding protein with strong neurodevelopmental and psychiatric implications. While Tanc2-null mice show embryonic lethality, Tanc2-haploinsufficient mice survive but display mTORC1/2 hyperactivity accompanying synaptic and behavioral deficits reversed by mTOR-inhibiting rapamycin. Tanc2 interacts with and inhibits mTOR, which is suppressed by mTOR-activating serum or ketamine, a fast-acting antidepressant. Tanc2 and Deptor, also known to inhibit mTORC1/2 minimally affecting neurodevelopment, distinctly inhibit mTOR in early- and late-stage neurons. Lastly, Tanc2 inhibits mTORC1/2 in human neural progenitor cells and neurons. In summary, our findings show that Tanc2 is a mTORC1/2 inhibitor affecting neurodevelopment.


Assuntos
Encéfalo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Células Cultivadas , Células HEK293 , Humanos , Imunossupressores/farmacologia , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/fisiopatologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/genética , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Proteínas/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
5.
Cell Rep ; 34(8): 108780, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33626347

RESUMO

CHD8 (chromodomain helicase DNA-binding protein 8) is a chromatin remodeler associated with autism spectrum disorders. Homozygous Chd8 deletion in mice leads to embryonic lethality, making it difficult to assess whether CHD8 regulates brain development and whether CHD8 haploinsufficiency-related macrocephaly reflects normal CHD8 functions. Here, we report that homozygous conditional knockout of Chd8 restricted to neocortical glutamatergic neurons causes apoptosis-dependent near-complete elimination of neocortical structures. These mice, however, display normal survival and hyperactivity, anxiolytic-like behavior, and increased social interaction. They also show largely normal auditory function and moderately impaired visual and motor functions but enhanced whisker-related somatosensory function. These changes accompany thalamic hyperactivity, revealed by 15.2-Tesla fMRI, and increased intrinsic excitability and decreased inhibitory synaptic transmission in thalamic ventral posterior medial (VPM) neurons involved in somatosensation. These results suggest that excitatory neuronal CHD8 critically regulates neocortical development through anti-apoptotic mechanisms, neocortical elimination distinctly affects cognitive behaviors and sensory-motor functions in mice, and Chd8 haploinsufficiency-related macrocephaly might represent compensatory responses.


Assuntos
Comportamento Animal , Cognição , Proteínas de Ligação a DNA/metabolismo , Atividade Motora , Neocórtex/enzimologia , Neurônios/metabolismo , Núcleos Ventrais do Tálamo/metabolismo , Vibrissas/inervação , Animais , Apoptose , Mapeamento Encefálico , Proteínas de Ligação a DNA/genética , Feminino , Genótipo , Ácido Glutâmico/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/patologia , Neocórtex/fisiopatologia , Neurônios/patologia , Fenótipo , Córtex Sensório-Motor/metabolismo , Córtex Sensório-Motor/fisiopatologia , Comportamento Social , Transmissão Sináptica , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Núcleos Ventrais do Tálamo/fisiopatologia
6.
EMBO Mol Med ; 13(2): e12632, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33428810

RESUMO

Glycine transporters (GlyT1 and GlyT2) that regulate levels of brain glycine, an inhibitory neurotransmitter with co-agonist activity for NMDA receptors (NMDARs), have been considered to be important targets for the treatment of brain disorders with suppressed NMDAR function such as schizophrenia. However, it remains unclear whether other amino acid transporters expressed in the brain can also regulate brain glycine levels and NMDAR function. Here, we report that SLC6A20A, an amino acid transporter known to transport proline based on in vitro data but is understudied in the brain, regulates proline and glycine levels and NMDAR function in the mouse brain. SLC6A20A transcript and protein levels were abnormally increased in mice carrying a mutant PTEN protein lacking the C terminus through enhanced ß-catenin binding to the Slc6a20a gene. These mice displayed reduced extracellular levels of brain proline and glycine and decreased NMDAR currents. Elevating glycine levels back to normal ranges by antisense oligonucleotide-induced SLC6A20 knockdown, or the competitive GlyT1 antagonist sarcosine, normalized NMDAR currents and repetitive climbing behavior observed in these mice. Conversely, mice lacking SLC6A20A displayed increased extracellular glycine levels and NMDAR currents. Lastly, both mouse and human SLC6A20 proteins mediated proline and glycine transports, and SLC6A20 proteins could be detected in human neurons. These results suggest that SLC6A20 regulates proline and glycine homeostasis in the brain and that SLC6A20 inhibition has therapeutic potential for brain disorders involving NMDAR hypofunction.


Assuntos
Glicina , Receptores de N-Metil-D-Aspartato , Animais , Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Homeostase , Proteínas de Membrana Transportadoras , Camundongos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
7.
EMBO J ; 39(11): e104150, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32347567

RESUMO

Alternative splicing regulates trans-synaptic adhesions and synapse development, but supporting in vivo evidence is limited. PTPδ, a receptor tyrosine phosphatase adhering to multiple synaptic adhesion molecules, is associated with various neuropsychiatric disorders; however, its in vivo functions remain unclear. Here, we show that PTPδ is mainly present at excitatory presynaptic sites by endogenous PTPδ tagging. Global PTPδ deletion in mice leads to input-specific decreases in excitatory synapse development and strength. This involves tyrosine dephosphorylation and synaptic loss of IL1RAPL1, a postsynaptic partner of PTPδ requiring the PTPδ-meA splice insert for binding. Importantly, PTPδ-mutant mice lacking the PTPδ-meA insert, and thus lacking the PTPδ interaction with IL1RAPL1 but not other postsynaptic partners, recapitulate biochemical and synaptic phenotypes of global PTPδ-mutant mice. Behaviorally, both global and meA-specific PTPδ-mutant mice display abnormal sleep behavior and non-REM rhythms. Therefore, alternative splicing in PTPδ regulates excitatory synapse development and sleep by modulating a specific trans-synaptic adhesion.


Assuntos
Proteína Acessória do Receptor de Interleucina-1/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Fases do Sono , Sinapses/metabolismo , Animais , Proteína Acessória do Receptor de Interleucina-1/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Tirosina Fosfatases/genética , Sinapses/genética
8.
Front Mol Neurosci ; 12: 250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680855

RESUMO

Netrin-G ligand-1 (NGL-1), encoded by Lrrc4c, is a post-synaptic adhesion molecule implicated in various brain disorders, including bipolar disorder, autism spectrum disorder, and developmental delay. Although previous studies have explored the roles of NGL-1 in the regulation of synapse development and function, the importance of NGL-1 for specific behaviors and the nature of related neural circuits in mice remain unclear. Here, we report that mice lacking NGL-1 (Lrrc4c-/- ) show strong hyperactivity and anxiolytic-like behavior. They also display impaired spatial and working memory, but normal object-recognition memory and social interaction. c-Fos staining under baseline and anxiety-inducing conditions revealed suppressed baseline neuronal activity as well as limited neuronal activation in widespread brain regions, including the anterior cingulate cortex (ACC), motor cortex, endopiriform nucleus, bed nuclei of the stria terminalis, and dentate gyrus. Neurons in the ACC, motor cortex, and dentate gyrus exhibit distinct alterations in excitatory synaptic transmission and intrinsic neuronal excitability. These results suggest that NGL-1 is important for normal locomotor activity, anxiety-like behavior, and learning and memory, as well as synapse properties and excitability of neurons in widespread brain regions under baseline and anxiety-inducing conditions.

9.
Front Mol Neurosci ; 12: 119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156385

RESUMO

Netrin-G ligand-1 (NGL-1), also known as LRRC4C, is a postsynaptic densities (PSDs)-95-interacting postsynaptic adhesion molecule that interacts trans-synaptically with presynaptic netrin-G1. NGL-1 and its family member protein NGL-2 are thought to promote excitatory synapse development through largely non-overlapping neuronal pathways. While NGL-2 is critical for excitatory synapse development in specific dendritic segments of neurons in an input-specific manner, whether NGL-1 has similar functions is unclear. Here, we show that Lrrc4c deletion in male mice moderately suppresses excitatory synapse development and function, but surprisingly, does so in an input-independent manner. While NGL-1 is mainly detected in the stratum lacunosum moleculare (SLM) layer of the hippocampus relative to the stratum radiatum (SR) layer, NGL-1 deletion leads to decreases in the number of PSDs in both SLM and SR layers in the ventral hippocampus. In addition, both SLM and SR excitatory synapses display suppressed short-term synaptic plasticity in the ventral hippocampus. These morphological and functional changes are either absent or modest in the dorsal hippocampus. The input-independent synaptic changes induced by Lrrc4c deletion involve abnormal translocation of NGL-2 from the SR to SLM layer. These results suggest that Lrrc4c deletion moderately suppresses hippocampal excitatory synapse development and function in an input-independent manner.

10.
Neuron ; 103(2): 217-234.e4, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31171447

RESUMO

Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org).


Assuntos
Encéfalo/citologia , Ontologia Genética , Proteômica , Software , Sinapses/fisiologia , Animais , Encéfalo/fisiologia , Bases de Dados Genéticas , Humanos , Bases de Conhecimento , Potenciais Sinápticos/fisiologia , Sinaptossomos
11.
Biol Psychiatry ; 85(7): 534-543, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30466882

RESUMO

BACKGROUND: Autism spectrum disorder involves neurodevelopmental dysregulations that lead to visible symptoms at early stages of life. Many autism spectrum disorder-related mechanisms suggested by animal studies are supported by demonstrated improvement in autistic-like phenotypes in adult animals following experimental reversal of dysregulated mechanisms. However, whether such mechanisms also act at earlier stages to cause autistic-like phenotypes is unclear. METHODS: We used Shank2-/- mice carrying a mutation identified in human autism spectrum disorder (exons 6 and 7 deletion) and combined electrophysiological and behavioral analyses to see whether early pathophysiology at pup stages is different from late pathophysiology at juvenile and adult stages and whether correcting early pathophysiology can normalize late pathophysiology and abnormal behaviors in juvenile and adult mice. RESULTS: Early correction of a dysregulated mechanism in young mice prevents manifestation of autistic-like social behaviors in adult mice. Shank2-/- mice, known to display N-methyl-D-aspartate receptor (NMDAR) hypofunction and autistic-like behaviors at postweaning stages after postnatal day 21 (P21), show the opposite synaptic phenotype-NMDAR hyperfunction-at an earlier preweaning stage (∼P14). Moreover, this NMDAR hyperfunction at P14 rapidly shifts to NMDAR hypofunction after weaning (∼P24). Chronic suppression of the early NMDAR hyperfunction by the NMDAR antagonist memantine (P7-P21) prevents NMDAR hypofunction and autistic-like social behaviors from manifesting at later stages (∼P28 and P56). CONCLUSIONS: Early NMDAR hyperfunction leads to late NMDAR hypofunction and autistic-like social behaviors in Shank2-/- mice, and early correction of NMDAR dysfunction has the long-lasting effect of preventing autistic-like social behaviors from developing at later stages.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Memantina/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Comportamento Social , Fatores Etários , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia
12.
Nat Neurosci ; 21(9): 1218-1228, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30104731

RESUMO

Autism spectrum disorders (ASDs) are four times more common in males than in females, but the underlying mechanisms are poorly understood. We characterized sexually dimorphic changes in mice carrying a heterozygous mutation in Chd8 (Chd8+/N2373K) that was first identified in human CHD8 (Asn2373LysfsX2), a strong ASD-risk gene that encodes a chromatin remodeler. Notably, although male mutant mice displayed a range of abnormal behaviors during pup, juvenile, and adult stages, including enhanced mother-seeking ultrasonic vocalization, enhanced attachment to reunited mothers, and isolation-induced self-grooming, their female counterparts do not. This behavioral divergence was associated with sexually dimorphic changes in neuronal activity, synaptic transmission, and transcriptomic profiles. Specifically, female mice displayed suppressed baseline neuronal excitation, enhanced inhibitory synaptic transmission and neuronal firing, and increased expression of genes associated with extracellular vesicles and the extracellular matrix. Our results suggest that a human CHD8 mutation leads to sexually dimorphic changes ranging from transcription to behavior in mice.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Ligação a DNA/biossíntese , Expressão Gênica/fisiologia , Neurônios/fisiologia , Caracteres Sexuais , Animais , Ansiedade de Separação/genética , Ansiedade de Separação/psicologia , Proteínas de Ligação a DNA/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Feminino , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Apego ao Objeto , Transdução de Sinais/fisiologia , Comportamento Social , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Transcriptoma , Vocalização Animal
13.
Biochem J ; 436(2): 263-9, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21375506

RESUMO

Mest (mesoderm-specific transcript)/Peg1 (paternally expressed gene 1) is an imprinted gene that plays important roles in embryo development, although its biochemical role has not been determined. Ectopic expression of Mest/Peg1 inhibited Wnt-mediated reporter activity by enhancing the ubiquitination of ß-catenin. The maturation and plasma membrane localization of the Wnt co-receptor LRP6 [LDLR (low-density lipoprotein receptor)-related protein 6], which are both necessary for Wnt signalling, were blocked by the expression of Mest/Peg1. Mest/Peg1 inhibited maturation of LRP6 by controlling the glycosylation of LRP6. Knockdown of Mest/Peg1, which might enhance Wnt signalling, blocked adipogenic differentiation of 3T3-L1 cells. Overall, our results suggest that Mest/Peg1 is a novel regulator of Wnt/ß-catenin signalling during adipogenic differentiation.


Assuntos
Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/fisiologia , Células 3T3-L1 , Adipogenia/fisiologia , Animais , Glicosilação , Células HEK293 , Humanos , Proteínas Relacionadas a Receptor de LDL/antagonistas & inibidores , Proteínas Relacionadas a Receptor de LDL/biossíntese , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos
14.
Exp Mol Med ; 41(10): 695-706, 2009 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-19561403

RESUMO

Wnt signaling is known to be important for diverse embryonic and post-natal cellular events and be regulated by the proteins Dishevelled and Axin. Although Dishevelled is activated by Wnt and involved in signal transduction, it is not clear how Dishevelled-mediated signaling is turned off. We report that guanine nucleotide binding protein beta 2 (Gnb2; Gbeta2) bound to Axin and Gbeta2 inhibited Wnt mediated reporter activity. The inhibition involved reduction of the level of Dishevelled, and the Gbeta2gamma2 mediated reduction of Dishevelled was countered by increased expression of Axin. Consistent with these effects in HEK293T cells, injection of Gbeta2gamma2 into Xenopus embryos inhibited the formation of secondary axes induced either by XWnt8 or Dishevelled, but not by beta-catenin. The DEP domain of Dishevelled is necessary for both interaction with Gbeta2gamma2 and subsequent degradation of Dishevelled via the lysosomal pathway. Signaling induced by Gbeta2gamma2 is required because a mutant of Gbeta2, Gbeta2 (W332A) with lower signaling activity, had reduced ability to downregulate the level of Dishevelled. Activation of Wnt signaling by either of two methods, increased Frizzled signaling or transient transfection of Wnt, also led to increased degradation of Dishevelled and the induced Dishevelled loss is dependent on Gbeta1 and Gbeta2. Other studies with agents that interfere with PLC action and calcium signaling suggested that loss of Dishevelled is mediated through the following pathway: Wnt/Frizzled-->Gbetagamma-->PLC-->Ca(+2)/PKC signaling. Together the evidence suggests a novel negative feedback mechanism in which Gbeta2gamma2 inhibits Wnt signaling by degradation of Dishevelled.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Blastômeros/metabolismo , Retroalimentação Fisiológica , Proteínas de Ligação ao GTP/metabolismo , Fosfoproteínas/metabolismo , Proteínas Wnt/genética , Proteínas de Xenopus/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína Axina , Blastômeros/citologia , Linhagem Celular , Proteínas Desgrenhadas , Desenvolvimento Embrionário/genética , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mutação , Fosfoproteínas/genética , Ligação Proteica , RNA Interferente Pequeno/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transfecção , Proteínas Wnt/metabolismo , Xenopus , Proteínas de Xenopus/metabolismo
15.
Mol Cell Biol ; 29(8): 2118-28, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19223472

RESUMO

Wnt signaling is implicated in a variety of developmental and pathological processes. The molecular mechanisms governing the secretion of Wnt ligands remain to be elucidated. Wntless, an evolutionarily conserved multipass transmembrane protein, is a dedicated secretion factor of Wnt proteins that participates in Drosophila melanogaster embryogenesis. In this study, we show that Xenopus laevis Wntless (XWntless) regulates the secretion of a specific Wnt ligand, XWnt4, and that this regulation is specifically required for eye development in Xenopus. Moreover, the Retromer complex is required for XWntless recycling to regulate the XWnt4-mediated eye development. Inhibition of Retromer function by Vps35 morpholino (MO) resulted in various Wnt deficiency phenotypes, affecting mesoderm induction, gastrulation cell movements, neural induction, neural tube closure, and eye development. Overexpression of XWntless led to the rescue of Vps35 MO-mediated eye defects but not other deficiencies. These results collectively suggest that XWntless and the Retromer complex are required for the efficient secretion of XWnt4, facilitating its role in Xenopus eye development.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Proteínas Wnt/metabolismo , Proteínas de Xenopus/fisiologia , Animais , Indução Embrionária , Olho/embriologia , Olho/crescimento & desenvolvimento , Mesoderma/embriologia , Complexos Multiproteicos/fisiologia , Tubo Neural/embriologia , Proteína Wnt4 , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA