Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(12): 104271, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39265516

RESUMO

Selenium is a heat-stress-reducing substance that improves heat resistance and is being studied for its effective application in the broiler industry. However, research on feed additives is labor-intensive and time-consuming because of the need for feeding experiments. We aimed to compare the effects of selenium under heat stress in vitro and in ovo, specifically examining the gene expression of heat shock proteins (HSP) and inflammatory markers. Two groups were included in the in-vitro study: in-vitro control (TC; selenium 0 µg/ml) and in-vitro selenium (TS; selenium 5 µg/ml). The satellite cells were cultured at 42°C for 48 h after selenium treatment. The in-ovo study comprised 4 groups: in-ovo control and in-ovo selenium 1-3 (OC, OS1, OS2, and OS3; selenium 2.5, 5, and 10 µg/egg, respectively). Selenium was injected on the 18th day after hatching, and heat treatment was performed at 32-34°C from the 14th to the 21st day after hatching, and the leg muscles of the chicks were collected on the 21st day. The gene expression of heat shock proteins (HSP), caspase3, nuclear factor kappa light-chain enhancer of activated B cells (NF-kB), and IL-8 was analyzed in in-vitro and in-ovo experiments, respectively. In-vitro results showed significant increases in HSP90, HSP60, and HSP40 in TS compared to TC, with a significant decrease in HSP70. In the in-ovo study, HSP70, caspase3, NF-kB and IL-8 were significantly increased in OS1. HSP90, HSP60, HSP40, HSP27 and NF-kB were significantly decreased in in-ovo OS2 compared to in-vitro TS, implying a trend in ratio compared to control. Selenium appeared to enhance heat resistance in-vitro and in-ovo by modulating HSPs and inflammation. However, differences in mRNA expression were observed depending on the concentration of selenium. These findings suggest that selenium modulates heat resistance through different mechanisms in-vitro and in-ovo, likely due to the complexity of whole-organism interactions in-ovo compared to the single-cell-type environment in-vitro. Therefore, to directly apply in-vitro results to in-ovo, a concentration comparison study for each additive is necessary.

2.
Poult Sci ; 103(10): 104071, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096830

RESUMO

This study assessed the trends in inbreeding, effective population size, and genetic diversity across six Korean native chicken lines using pedigree records from 54,383 chickens. Understanding these genetic parameters is significantly important for maintaining healthy and viable chicken populations. The primary objective was to analyze the pedigree data to assess the levels of inbreeding and genetic diversity and to evaluate the effective population size across the different lines. Pedigree analysis revealed that pedigree completeness peaked in the first generation and declined in subsequent generations for all lines. Line A exhibited a mean inbreeding coefficient of 0.0201, whereas the other lines displayed lower mean values ranging from 0.0009 to 0.0098, indicating that inbreeding levels were within an acceptable range and considered safe from extinction. Average relatedness consistently increased with time. Individual increases in inbreeding were the highest in Line A (0.62%), with smaller increases in the other lines ranging from 0.02 to 0.23%. Effective population sizes varied from 81 to 2500, with average coancestry within parental populations ranging from 0.0032 to 0.0290. The fe/fa ratio between 1.00 and 1.69 in the 6 lines suggested a moderate impact during bottleneck events, with subsequent populations recovering well. The genetic diversity loss due to genetic drift and unequal founder contributions ranged from 0.66-3.15%, indicating that considerable genetic variability remains within the populations. The results of this study have practical applications in the management and conservation of genetic resources in poultry breeding programs. By highlighting the importance of monitoring inbreeding and maintaining genetic diversity, the findings can help develop strategies to ensure the long-term sustainability of these chicken lines. This study provides valuable insights into the genetic management of Korean native chicken lines, emphasizing the need for strategic breeding practices to preserve genetic health and diversity.

3.
Front Microbiol ; 15: 1410024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962131

RESUMO

The Deinococcus genus is renowned for its remarkable resilience against environmental stresses, including ionizing radiation, desiccation, and oxidative damage. This resilience is attributed to its sophisticated DNA repair mechanisms and robust defense systems, enabling it to recover from extensive damage and thrive under extreme conditions. Central to Deinococcus research, the D. radiodurans strains ATCC BAA-816 and ATCC 13939 facilitate extensive studies into this remarkably resilient genus. This study focused on delineating genetic discrepancies between these strains by sequencing our laboratory's ATCC 13939 specimen (ATCC 13939K) and juxtaposing it with ATCC BAA-816. We uncovered 436 DNA sequence differences within ATCC 13939K, including 100 single nucleotide variations, 278 insertions, and 58 deletions, which could induce frameshifts altering protein-coding genes. Gene annotation revisions accounting for gene fusions and the reconciliation of gene lengths uncovered novel protein-coding genes and refined the functional categorizations of established ones. Additionally, the analysis pointed out genome structural variations due to insertion sequence (IS) elements, underscoring the D. radiodurans genome's plasticity. Notably, ATCC 13939K exhibited a loss of six ISDra2 elements relative to BAA-816, restoring genes fragmented by ISDra2, such as those encoding for α/ß hydrolase and serine protease, and revealing new open reading frames, including genes imperative for acetoin decomposition. This comparative genomic study offers vital insights into the metabolic capabilities and resilience strategies of D. radiodurans.

4.
Bioresour Technol ; 403: 130871, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782190

RESUMO

Polyethylene (PE) exhibits high resistance to degradation, contributing to plastic pollution. PE discarded into the environment is photo-oxidized by sunlight and oxygen. In this study, a key enzyme capable of degrading oxidized PE is reported for the first time. Twenty different enzymes from various lipase families were evaluated for hydrolytic activity using substrates mimicking oxidized PE. Among them, Pelosinus fermentans lipase 1 (PFL1) specifically cleaved the ester bonds within the oxidized carbon-carbon backbone. Moreover, PFL1 (6 µM) degraded oxidized PE film, reducing the weight average and number average molecular weights by 44.6 and 11.3 %, respectively, within five days. Finally, structural analysis and molecular docking simulations were performed to elucidate the degradation mechanism of PFL1. The oxidized PE-degrading enzyme reported here will provide the groundwork for advancing PE waste treatment technology and for engineering microbes to repurpose PE waste into valuable chemicals.


Assuntos
Biodegradação Ambiental , Lipase , Oxirredução , Polietileno , Lipase/metabolismo , Lipase/química , Polietileno/química , Simulação de Acoplamento Molecular , Hidrólise
5.
J Anim Sci Technol ; 66(2): 387-397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38628681

RESUMO

Pork quality is determined by several attributes, among which odor and taste are the utmost significant. Therefore, this study was aimed to assess the effects of boar odor hormone concentration on the quality traits and sensory acceptability of pork. A total twenty-six (26) non-castrated 3-way crossbred (Landrace × Yorkshire × Duroc) pigs were selected with an average body weight (ABW) 115.6 kg before to slaughter. The three treatment groups (low, medium and high) were divided according to the androstenone concentration. In experiment 1, for meat quality traits carcass was selected based on androstenone concentration: low (LC, 0.64-0.69 µg/g, n = 9), medium (MC, 0.70-0.99 µg/g, n = 7) and high (HC, 1.00-1.69 µg/g, n = 10). In experiment 2, for sensory evaluation carcasses were also selected based on the abovementioned conditions. Results revealed that androstenone concentration not effect on proximate components, meat quality traits and fatty acids except palmitoleic acid. Sensory evaluation data showed that boar taint and meat boar taint were significantly increased in a concentration-dependent manner from low to high, whereas, gravy and meat flavor preference were significantly increased in LC group than HC group. In addition, correlation analysis showed that boar taint and meat boar taint were positively, and gravy and meat flavor preference were negatively correlated with boar taint hormones. In essence, our findings indicate that androstenone concentration had no effect on meat qualities, but a high concentration of androstenone had a negative effect on the sensory characteristics in uncastrated pigs.

6.
J Anim Sci Technol ; 66(2): 366-373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38628682

RESUMO

This study aims to estimate the connectedness rating (CR) of Korean swine breeding herds. Using 104,380 performance and 83,200 reproduction records from three swine breeds (Yorkshire, Landrace and Duroc), the CR was estimated for two traits: average daily gain (ADG) and number born alive (NBA) in eight breeding herds in the Republic of Korea (hereafter, Korea). The average CR for ADG in the Yorkshire breed ranges from 1.32% to 28.5% depending on the farm. The average CR for NBA in the Yorkshire herd ranges from 0% to 12.79%. A total of 60% of Yorkshire and Duroc herds satisfied the preconditions suggested for genetic evaluation among the herds. The precondition for the genetic evaluation of CR for ADG, as a productive trait, was higher than 3% and that of NBA, as a reproductive trait, was higher than 1.5%. The ADG in the Yorkshire herds showed the highest average CR. However, the average CR of ADG in the Landrace herds was lower than the criterion of the precondition. The prediction error variance of the difference (PEVD) was employed to assess the validation of the CR, as PEVDs exhibit fluctuations that are coupled with the CR across the herds. A certain degree of connectedness is essential to estimate breeding value comparisons between pig herds. This study suggests that it is possible to evaluate the genetic performance together for ADG and NBA in the Yorkshire herds since the preconditions were satisfied for these four herds. It is also possible to perform a joint genetic analysis of the ADG records of all Duroc herds since the preconditions were also satisfied. This study provides new insight into understanding the genetic connectedness of Korean pig breeding herds. CR could be utilized to accelerate the genetic progress of Korean pig breeding herds.

7.
Int J Biol Macromol ; 269(Pt 2): 131834, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688341

RESUMO

The amylosucrase (ASase, EC 2.4.1.4) utilizes sucrose as the sole substrate to catalyze multifunctional reactions. It can naturally synthesize α-1,4-linked glucans such as amylose as well as sucrose isomers with more favorable properties than sucrose with a lower intestinal digestibility and non-cariogenic properties. The amino acid sequence of the asase gene from Deinococcus cellulosilyticus (DceAS) exhibits low homology with those of other ASases from other Deinococcus species. In this study, we cloned and expressed DceAS and demonstrated its high activity at pH 6 and pH 8 and maintained stability. It showed higher polymerization activity at pH 6 than at pH 8, but similar isomerization activity and produced more turanose and trehalulose at pH 6 than at pH 8 and produced more isomaltulose at pH 8. Furthermore, the molecular weight of DceAS was 226.6 kDa at pH 6 and 145.5 kDa at pH 8, indicating that it existed as a trimer and dimer, respectively under those conditions. Additionally, circular dichroism spectra showed that the DceAS secondary structure was different at pH 6 and pH 8. These differences in reaction products at different pHs can be harnessed to naturally produce sucrose alternatives that are more beneficial to human health.


Assuntos
Deinococcus , Glucosiltransferases , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Deinococcus/enzimologia , Deinococcus/genética , Concentração de Íons de Hidrogênio , Isomaltose/metabolismo , Isomaltose/química , Isomaltose/análogos & derivados , Sequência de Aminoácidos , Estabilidade Enzimática , Clonagem Molecular , Peso Molecular , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sacarose/metabolismo , Especificidade por Substrato , Cinética , Estrutura Secundária de Proteína , Dissacarídeos
8.
J Microbiol ; 61(11): 981-992, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38055144

RESUMO

Reactive oxygen species induce DNA strand breaks and DNA oxidation. DNA oxidation leads to DNA mismatches, resulting in mutations in the genome if not properly repaired. Homologous recombination (HR) and non-homologous end-joining (NHEJ) are required for DNA strand breaks, whereas the base excision repair system mainly repairs oxidized DNAs, such as 8-oxoguanine and thymine glycol, by cleaving the glycosidic bond, inserting correct nucleotides, and sealing the gap. Our previous studies revealed that the Rad53-Bdr1 pathway mainly controls DNA strand breaks through the regulation of HR- and NHEJ-related genes. However, the functional roles of genes involved in the base excision repair system remain elusive in Cryptococcus neoformans. In the present study, we identified OGG1 and NTG1 genes in the base excision repair system of C. neoformans, which are involved in DNA oxidation repair. The expression of OGG1 was induced in a Hog1-dependent manner under oxidative stress. On the other hand, the expression of NTG1 was strongly induced by DNA damage stress in a Rad53-independent manner. We demonstrated that the deletion of NTG1, but not OGG1, resulted in elevated susceptibility to DNA damage agents and oxidative stress inducers. Notably, the ntg1Δ mutant showed growth defects upon antifungal drug treatment. Although deletion of OGG1 or NTG1 did not increase mutation rates, the mutation profile of each ogg1Δ and ntg1Δ mutant was different from that of the wild-type strain. Taken together, we found that DNA N-glycosylase Ntg1 is required for oxidative DNA damage stress and antifungal drug resistance in C. neoformans.


Assuntos
Cryptococcus neoformans , Cryptococcus neoformans/genética , Dano ao DNA , Reparo do DNA , Estresse Oxidativo , Mutação
9.
World J Microbiol Biotechnol ; 40(1): 29, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057638

RESUMO

Oxidative stress, arising from excess reactive oxygen species (ROS) or insufficient antioxidant defenses, can damage cellular components, such as lipids, proteins, and nucleic acids, resulting in cellular dysfunction. The relationship between oxidative stress and various health disorders has prompted investigations into potent antioxidants that counteract ROS's detrimental impacts. In this context, antioxidant peptides, composed of two to twenty amino acids, have emerged as a unique group of antioxidants and have found applications in food, nutraceuticals, and pharmaceuticals. Antioxidant peptides are sourced from natural ingredients, mainly proteins derived from foods like milk, eggs, meat, fish, and plants. These peptides can be freed from their precursor proteins through enzymatic hydrolysis, fermentation, or gastrointestinal digestion. Previously published studies focused on the origin and production methods of antioxidant peptides, describing their structure-activity relationship and the mechanisms of food-derived antioxidant peptides. Yet, the role of microorganisms hasn't been sufficiently explored, even though the production of antioxidant peptides frequently employs a variety of microorganisms, such as bacteria, fungi, and yeasts, which are recognized for producing specific proteases. This review aims to provide a comprehensive overview of microorganisms and their proteases participating in enzymatic hydrolysis and microbial fermentation to produce antioxidant peptides. This review also covers endogenous peptides originating from microorganisms. The information obtained from this review might guide the discovery of novel organisms adept at generating antioxidant peptides.


Assuntos
Antioxidantes , Peptídeos , Animais , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio , Peptídeos/química , Suplementos Nutricionais , Peptídeo Hidrolases
10.
Microorganisms ; 11(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37763980

RESUMO

Cell growth is inhibited by abiotic stresses during industrial processes, which is a limitation of microbial cell factories. Microbes with robust phenotypes are critical for its maximizing the yield of the target products in industrial biotechnology. Currently, there are several reports on the enhanced production of industrial metabolite through the introduction of Deinococcal genes into host cells, which confers cellular robustness. Deinococcus is known for its unique genetic function thriving in extreme environments such as radiation, UV, and oxidants. In this study, we established that Deinococcus proteolyticus showed greater resistance to oxidation and UV-C than commonly used D. radiodurans. By screening the genomic library of D. proteolyticus, we isolated a gene (deipr_0871) encoding a response regulator, which not only enhanced oxidative stress, but also promoted the growth of the recombinant E. coli strain. The transcription analysis indicated that the heterologous expression of deipr_0871 upregulated oxidative-stress-related genes such as ahpC and sodA, and acetyl-CoA-accumulation-associated genes via soxS regulon. Deipr_0871 was applied to improve the production of the valuable metabolite, poly-3-hydroxybutyrate (PHB), in the synthetic E. coli strain, which lead to the remarkably higher PHB than the control strain. Therefore, the stress tolerance gene from D. proteolyticus should be used in the modification of E. coli for the production of PHB and other biomaterials.

11.
Bioresour Technol ; 387: 129546, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37488011

RESUMO

This study identified an endosymbiotic bacterium, Bacillus tequilensis, residing within the cells of the microalga Haematococcus lacustris through 16S rRNA analysis. To confirm the optimal interactive conditions between H. lacustris and B. tequilensis, the effects of different ratios of cells using H. lacustris of different growth stages were examined. Under optimized conditions, the cell density, dry weight, chlorophyll content, and astaxanthin content of H. lacustris increased significantly, and the fatty acid content improved 1.99-fold. Microscopy demonstrated the presence of bacteria within the H. lacustris cells. The interaction upregulated amino acid and nucleotide metabolism in H. lacustris. Interestingly, muramic and phenylacetic acids were found exclusively in H. lacustris cells in the presence of B. tequilensis. Furthermore, B. tequilensis delayed pigment degradation in H. lacustris. This study reveals the impact of the endosymbiont B. tequilensis on the metabolism of H. lacustris and offers new perspectives on the symbiotic relationship between them.


Assuntos
Clorofíceas , Microalgas , Endófitos , RNA Ribossômico 16S/genética , Bactérias
12.
Biol Proced Online ; 25(1): 17, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328878

RESUMO

BACKGROUND: Deinococcus radiodurans is a robust bacterium that can withstand harsh environments that cause oxidative stress to macromolecules due to its cellular structure and physiological functions. Cells release extracellular vesicles for intercellular communication and the transfer of biological information; their payload reflects the status of the source cells. Yet, the biological role and mechanism of Deinococcus radiodurans-derived extracellular vesicles remain unclear. AIM: This study investigated the protective effects of membrane vesicles derived from D. radiodurans (R1-MVs) against H2O2-induced oxidative stress in HaCaT cells. RESULTS: R1-MVs were identified as 322 nm spherical molecules. Pretreatment with R1-MVs inhibited H2O2-mediated apoptosis in HaCaT cells by suppressing the loss of mitochondrial membrane potential and reactive oxygen species (ROS) production. R1-MVs increased the superoxide dismutase (SOD) and catalase (CAT) activities, restored glutathione (GSH) homeostasis, and reduced malondialdehyde (MDA) production in H2O2-exposed HaCaT cells. Moreover, the protective effect of R1-MVs against H2O2-induced oxidative stress in HaCaT cells was dependent on the downregulation of mitogen-activated protein kinase (MAPK) phosphorylation and the upregulation of the nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway. Furthermore, the weaker protective capabilities of R1-MVs derived from ΔDR2577 mutant than that of the wild-type R1-MVs confirmed our inferences and indicated that SlpA protein plays a crucial role in R1-MVs against H2O2-induced oxidative stress. CONCLUSION: Taken together, R1-MVs exert significant protective effects against H2O2-induced oxidative stress in keratinocytes and have the potential to be applied in radiation-induced oxidative stress models.

13.
Food Sci Biotechnol ; 32(6): 749-768, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37041815

RESUMO

Microbial biocatalysts are evolving technological tools for glycosylation research in food, feed and pharmaceuticals. Advances in bioengineered Leloir and non-Leloir carbohydrate-active enzymes allow for whole-cell biocatalysts to curtail production costs of purified enzymes while enhancing glucan synthesis through continued enzyme expression. Unlike sugar nucleotide-dependent Leloir glycosyltransferases, non-Leloir enzymes require inexpensive sugar donors and can be designed to match the high value, yield and selectivity of the former. This review addresses the current state of bacterial cell-based production of glucans and glycoconjugates via transglycosylation, and describes how alterations made to microbial hosts to surpass purified enzymes as the preferred mode of catalysis are steadily being acquired through genetic engineering, rational design and process optimization. A comprehensive exploration of relevant literature has been summarized to describe whole-cell biocatalysis in non-Leloir glycosylation reactions with various donors and acceptors, and the characterization, application and latest developments in the optimization of their use.

14.
Front Microbiol ; 13: 1016675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274706

RESUMO

The 4-α-glucanotransferase (4-α-GTase or amylomaltase) is an essential enzyme in maltodextrin metabolism. Generally, most bacterial 4-α-GTase is classified into glycoside hydrolase (GH) family 77. However, hyperthermophiles have unique 4-α-GTases belonging to GH family 57. These enzymes are the main amylolytic protein in hyperthermophiles, but their mode of action in maltooligosaccharide utilization is poorly understood. In the present study, we investigated the catalytic properties of 4-α-GTase from the hyperthermophile Pyrococcus sp. ST04 (PSGT) in the presence of maltooligosaccharides of various lengths. Unlike 4-α-GTases in GH family 77, GH family 57 PSGT produced maltotriose in the early stage of reaction and preferred maltose and maltotriose over glucose as the acceptor. The kinetic analysis showed that maltotriose had the lowest KM value, which increased amylose degradation activity by 18.3-fold. Structural models of PSGT based on molecular dynamic simulation revealed two aromatic amino acids interacting with the substrate at the +2 and +3 binding sites, and the mutational study demonstrated they play a critical role in maltotriose binding. These results clarify the mode of action in carbohydrate utilization and explain acceptor binding mechanism of GH57 family 4-α-GTases in hyperthermophilic archaea.

15.
Curr Microbiol ; 79(11): 334, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36161362

RESUMO

A Gram-stain-negative, nonspore-forming, nonmotile, aerobic, rod-shaped, and very pale orange-colored bacterial strain, designated TS293T, was isolated from a sand sample obtained from a coastal dune after exposure to 3kGy of gamma (γ)-radiation. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the isolate was a member of the genus Deinococcus and clustered with D. deserti VCD115T. The genome of strain TS293T was 4.62 Mbp long (68.2% G + C content and 4124 predicted genes) divided into a 2.86Mb main chromosome and five plasmids. Many genes considered to be important to the γ-radiation and oxidative stress resistance of Deinococcus were conserved in TS293T, but genome features that could differentiate TS293T from D. deserti and D. radiodurans, the type species of the Deinococcus genus, were also detected. Strain TS293T showed resistance to γ-radiation with D10 values (i.e., the dose required to reduce the bacterial population by tenfold) of 3.1kGy. The predominant fatty acids of strain TS293T were summed feature 3 (C16:1 ω6c and/or C16:1 ω7c) and iso-C16:0. The major polar lipids were two unidentified phosphoglycolipids and one unidentified glycolipid. The main respiratory quinone was menaquinone-8. Based on the phylogenetic, genomic, physiological, and chemotaxonomic characteristics, strain TS293T represents a novel species, for which the name Deinococcus taeanensis sp. nov. is proposed. The type strain is TS293T (= KCTC 43191T = JCM 34027T).


Assuntos
Deinococcus , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Glicolipídeos/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Areia , Análise de Sequência de DNA , Vitamina K 2
16.
Sci Rep ; 12(1): 11345, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790804

RESUMO

In this work, we proposed a new damage model for estimating radiation-induced direct damage to biomolecular systems and validated its the effectiveness for pBR322 plasmids. The proposed model estimates radiation-induced damage to biomolecular systems by: (1) simulation geometry modeling using the coarse-grained (CG) technique to replace the minimum repeating units of a molecule with a single bead, (2) approximation of the threshold energy for radiation damage through CG potential calculation, (3) calculation of cumulative absorption energy for each radiation event in microscopic regions of CG models using the Monte Carlo track structure (MCTS) code, and (4) estimation of direct radiation damage to biomolecular systems by comparing CG potentials and absorption energy. The proposed model replicated measured data with an average error of approximately 14.2% in the estimation of radiation damage to pBR322 plasmids using the common MCTS code Geant4-DNA. This is similar to the results of previous simulation studies. However, in existing damage models, parameters are adjusted based on experimental data to increase the reliability of simulation results, whereas in the proposed model, they can be determined without using empirical data. Because the proposed model proposed is applicable to DNA and various biomolecular systems with minimal experimental data, it provides a new method that is convenient and effective for predicting damage in living organisms caused by radiation exposure.


Assuntos
DNA , Simulação por Computador , DNA/química , Método de Monte Carlo , Plasmídeos/genética , Reprodutibilidade dos Testes
17.
Anim Biosci ; 35(12): 1957-1966, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35798041

RESUMO

OBJECTIVE: This study aimed to evaluate the difference in the thigh meat quality of Ross 308 broiler from conventional and welfare farms. METHODS: Thigh meat samples of Ross 308 broilers (age, 35 d; carcass weight, 1.1 kg) from conventional farm (RCF, n = 60) and animal welfare farms (RAWF, n = 60) were analyzed. Proximate composition, pH, color (lightness, redness, and yellowness), water-holding capacity (WHC), shear force, total aerobic bacteria (TAB), and volatile basic nitrogen (VBN) were measured and the levels of bioactive compounds such as dipeptides (anserine and carnosine), creatine, creatinine, and their anti-oxidation activity were determined. RESULTS: The RCF and RAWF did not differ significantly in their proximate composition, WHC, color, and creatine and carnosine levels. The pH value was significantly lower in RAWF than in RCF on day 7. The shear force value was significantly higher in RAWF than in RCF throughout the storage duration. TAB in RCF on day 9 were significantly higher than those in RAWF. The VBN content of RAWF was significantly lower than that of RCF after 5 days of storage. Creatinine content was significantly higher in RAWF (3.50 mg/100 g) than in RCF (3.08 mg/100 g) on day 1. Along with higher carnosine and anserine contents of RAWF, it had significantly higher 2,2-diphenyl-1-picrylhydrazyl and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) radical scavenging activities than those of RCF. CONCLUSION: These results imply that the animal welfare farming system beneficially affects the overall oxidative stability of Ross 308 thigh meat.

18.
Microbiol Spectr ; 10(4): e0104422, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736239

RESUMO

A balance in the deoxyribonucleotide (dNTPs) intracellular concentration is critical for the DNA replication and repair processes. In the model yeast Saccharomyces cerevisiae, the Mec1-Rad53-Dun1 kinase cascade mainly regulates the ribonucleotide reductase (RNR) gene expression during DNA replication and DNA damage stress. However, the RNR regulatory mechanisms in basidiomycete fungi during DNA replication and damage stress remain elusive. Here, we observed that in C. neoformans, RNR1 (large RNR subunit) and RNR21 (one small RNR subunit) were required for cell viability, but not RNR22 (another small RNR subunit). RNR22 overexpression compensated for the lethality of RNR21 suppression. In contrast to the regulatory mechanisms of RNRs in S. cerevisiae, Rad53 and Chk1 kinases cooperatively or divergently controlled RNR1 and RNR21 expression under DNA damage and DNA replication stress. In particular, this study revealed that Chk1 mainly regulated RNR1 expression during DNA replication stress, whereas Rad53, rather than Chk1, played a significant role in controlling the expression of RNR21 during DNA damage stress. Furthermore, the expression of RNR22, not but RNR1 and RNR21, was suppressed by the Ssn6-Tup1 complex during DNA replication stress. Notably, we observed that RNR1 expression was mainly regulated by Mbs1, whereas RNR21 expression was cooperatively controlled by Mbs1 and Bdr1 as downstream factors of Rad53 and Chk1 during DNA replication and damage stress. Collectively, the regulation of RNRs in C. neoformans has both evolutionarily conserved and divergent features in DNA replication and DNA damage stress, compared with other yeasts. IMPORTANCE Upon DNA replication or damage stresses, it is critical to provide proper levels of deoxynucleotide triphosphates (dNTPs) and activate DNA repair machinery. Ribonucleotide reductases (RNRs), which are composed of large and small subunits, are required for synthesizing dNTP. An imbalance in the intracellular concentration of dNTPs caused by the perturbation of RNR results in a reduction in DNA repair fidelity. Despite the importance of their roles, functions and regulations of RNR have not been elucidated in the basidiomycete fungi. In this study, we found that the roles of RNR1, RNR21, and RNR22 genes encoding RNR subunits in the viability of C. neoformans. Furthermore, their expression levels are divergently regulated by the Rad53-Chk1 pathway and the Ssn6-Tup1 complex in response to DNA replication and damage stresses. Therefore, this study provides insight into the regulatory mechanisms of RNR genes to DNA replication and damage stresses in basidiomycete fungi.


Assuntos
Cryptococcus neoformans , Dano ao DNA , Ribonucleotídeo Redutases , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Replicação do DNA , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Viruses ; 14(3)2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35336890

RESUMO

Bacillus subtilis is an important bacterial species due to its various industrial, medicinal, and agricultural applications. Prophages are known to play vital roles in host properties. Nevertheless, studies on the prophages and temperate phages of B. subtilis are relatively limited. In the present study, an in silico analysis was carried out in sequenced B. subtilis strains to investigate their prevalence, diversity, insertion sites, and potential roles. In addition, the potential for UV induction and prevalence was investigated. The in silico prophage analysis of 164 genomes of B. subtilis strains revealed that 75.00% of them contained intact prophages that exist as integrated and/or plasmid forms. Comparative genomics revealed the rich diversity of the prophages distributed in 13 main clusters and four distinct singletons. The analysis of the putative prophage proteins indicated the involvement of prophages in encoding the proteins linked to the immunity, bacteriocin production, sporulation, arsenate, and arsenite resistance of the host, enhancing its adaptability to diverse environments. An induction study in 91 B. subtilis collections demonstrated that UV-light treatment was instrumental in producing infective phages in 18.68% of them, showing a wide range of host specificity. The high prevalence and inducibility potential of the prophages observed in this study implies that prophages may play vital roles in the B. subtilis host.


Assuntos
Bacteriófagos , Prófagos , Bacillus subtilis/genética , Bacteriófagos/genética , Genoma Viral , Plasmídeos , Prevalência , Prófagos/genética
20.
Enzyme Microb Technol ; 153: 109955, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826778

RESUMO

Non-digestible isomaltooligosaccharides (NDIMOS) are functional food and beverage ingredients that contributed to human health benefits through metabolism of gastrointestinal microorganism. In this study, NDIMOS were synthesized by combine dextransucrase from Leuconostoc mesenteroides B512F/KM and alternansucrase from L. mesenteroides NRRL 1355CF10/KM using sucrose as substrate and maltose as acceptor. Their digestibility was confirmed by using digestive enzymes including α-amylase and amyloglucosidase. NDIMOS inhibited insoluble glucan formation through mutansucrase from Streptococcus mutans. The bifidogenic effect of NDIMOS was investigated by growth of four strains of Bifidobacterium in MRS broth containing NDIMOS, compared with MRS broth contain glucose and negative control. Additionally, Bifidobacterium bifidum or Bifidobacterium adolescentis inhibited the growth of Salmonella enterica serovar typhimurium when they were co-cultivation in MRS broth containing NDIMOS. These results suggested that NDIMOS is potential functional ingredient for food, beverage, and pharmaceutical application.


Assuntos
Placa Dentária , Glucosiltransferases , Glicosiltransferases , Humanos , Sacarose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA