Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(7): 8919-8928, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33567825

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant attention for their outstanding optoelectrical properties. Unlike most TMDs with layer-dependent photoresponsivity, rhenium disulfide (ReS2) shows excellent thickness-independent photoresponsivity. Herein, we show a surfactant-free polyvinyl alcohol (PVA)-assisted exfoliation method for 2D-TMDs in aqueous solution and a transparent photosensitive memristor synapse device based on ReS2 nanosheets composited with PVA. ReS2 nanosheets are obtained via PVA-assisted exfoliation. After exfoliation, the ReS2-PVA dispersion solution is spin-coated on a substrate and dried to form a nanocomposite film without additional processing. Transparent memristors are then fabricated on plastic or glass substrates to demonstrate the applicability of the ReS2-PVA film. The devices show "write once, read many" memory behavior with a high ON/OFF current ratio (1.0 × 104 at 0.5 V) during electrical operation. In the high resistive state, synaptic functions with long-term memory behavior are successfully mimicked by applying photonic stimuli to the transparent ReS2-PVA memristors. The excitatory postsynaptic current stimulated by the photosignal is gradually reduced by electric stimuli. The proposed PVA-assisted exfoliation method is cost-effective, environmentally friendly, and applicable to various TMD nanomaterials. Furthermore, the ReS2-PVA nanocomposite film obtained via a simple solution-based process demonstrates excellent photosynaptic behavior.

2.
ACS Appl Mater Interfaces ; 12(1): 1368-1377, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31816224

RESUMO

Two-dimensional MoX2 (X = S, Se) films were vertically grown on highly rough transparent conducting F-doped SnO2 glass substrates for the first time and successfully used as photogenerated carrier-guiding layers (CGLs) in transparent hydrogenated amorphous silicon (a-Si:H) thin film solar cells (TFSCs). The MoSe2 CGL layers could be grown at 530 °C using thermally cracked small Se-molecules on transparent FTO glass substrates and significantly improved cell performance. A transparent cell transmitting 26.0% of visible light with a 20 nm-thick vertically grown MoSe2 CGL showed an outstanding power conversion efficiency of 27.1% at a light intensity of 0.16 mW cm-2 (500 lx; corresponding to normal indoor irradiation). The shunt resistance (Rsh) of the TFSCs reached 32,000 Ω at a light intensity of 7 mW cm-2. An Rsh value this large is essential for low-light photovoltaic (PV) devices to prevent the dissipation of photogenerated carriers. These results strongly demonstrate that transparent a-Si:H-TFSCs with vertically grown MoX2 films should find wide use in building-integrated PV windows or indoor PV applications, as they can generate power even in very low-light environments.

3.
Nanoscale ; 10(32): 15213-15221, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30062340

RESUMO

This work reports a breakthrough technique for achieving high quality and uniform molybdenum dichalcogenide (MoX2 where X = S, Se) films on large-area wafers via metal-agglomeration-suppressed growth (MASG) with small chalcogen (X-) molecules at growth temperatures (TG) of 600 °C or lower. In order to grow MoS2 films suitable for field effect transistors (FETs), S-molecules should be pre-deposited on Mo films at 60 °C prior to heating the substrate up to TG. The pre-deposited S-molecules successfully suppressed the agglomeration of Mo during sulfurization and prevented the formation of protruding islands in the resultant sulfide films. The small X-molecules supplied from a thermal cracker reacted with Mo-precursor film to form MoX2. The film quality strongly depends on the temperatures of cracking and reservoir zones, as well as TG. The MoS2 film grown at 570 °C showed a thickness variation of less than 3.3% on a 6 inch-wafer. The mobility and on/off current ratio of 6.1 nm-MoS2 FET at TG = 570 °C were 59.8 cm2 V-1 s-1 and 105, respectively. The most significant advantages of the MASG method proposed in this work are its expandability to various metal dichalcogenides on larger substrates as well as a lower TG enabled by using reactive small molecules supplied from a cracker, for which temperature is independently controlled.

4.
ACS Appl Mater Interfaces ; 10(31): 26405-26412, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-29998730

RESUMO

A new concept of a tunneling oxide-free nonvolatile memory device with a deep trap interface floating gate is proposed. This device demonstrates a high on/off current ratio of 107 and a sizable memory window due to deep traps at the interface between the channel and gate dielectric layers. Interestingly, irradiation with 400 nm light can completely restore the program state to the initial one (performing an erasing process), which is attributed to the visible light-sensitive channel layer. Device reproducibility is enhanced by selectively passivating shallow traps at the interface using in situ H2 plasma treatment. The passivated memory device shows highly reproducible memory operation and on-state current during retention bake tests at 85 °C. One of the most significant advantages of this visible light-erasable oxide field-effect transistor-based nonvolatile memory is its simple structure, which is free from deterioration due to the frequent tunneling processes, as compared to conventional nonvolatile memory devices with tunneling oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA