Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochem Anal ; 32(4): 521-529, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33034094

RESUMO

INTRODUCTION: Craterostigma plantagineum and Lindernia brevidens are resurrection plants, so these plants can tolerate desiccation of their vegetative tissues. Different components and mechanisms contribute to desiccation tolerance and secondary plant metabolites, like phenolic compounds, may play a role during these processes. OBJECTIVES: Secondary plant metabolites of the two resurrection plants, C. plantagineum and L. brevidens as well as the closely related desiccation sensitive species, L. subracemosa, were investigated regarding the polyphenol profile. MATERIAL AND METHODS: Secondary plant compounds were extracted with acidified methanol and analysed with ultra-high-performance liquid chromatography electrospray ionisation mass spectrometry (UHPLC-ESI-MS). Phenolic compounds were identified by comparing of ultraviolet (UV) and MSn -spectra with published data. All compounds were quantified as verbascoside equivalents by external calibration at the compound specific wavelength. RESULTS: In total, eight compounds that belong to the subclass of phenylethanoid glycosides and one flavone, luteolin hexoside pentoside, were identified. Two of these compounds exhibited a fragmentation pattern, which is closely related to phenylethanoid glycosides. The predominantly synthesised phenylethanoid in all of the three plant species and in every stage of hydration was verbascoside. The total content of phenolic compounds during the three stages of hydration, untreated, desiccated, and rehydrated revealed differences especially between C. plantagineum and L. brevidens as the latter one lost almost all phenolic compounds during rehydration. CONCLUSION: The amount of verbascoside correlates with the degree of desiccation tolerance and verbascoside might play a role in the protective system in acting as an antioxidant.


Assuntos
Craterostigma , Dessecação
2.
Front Plant Sci ; 10: 1698, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038677

RESUMO

Plant cell walls define the shape of the cells and provide mechanical support. They function as osmoregulators by controlling the transport of molecules between cells and provide transport pathways within the plant. These diverse functions require a well-defined and flexible organization of cell wall components, i.e., water, polysaccharides, proteins, and other diverse substances. Cell walls of desiccation tolerant resurrection plants withstand extreme mechanical stress during complete dehydration and rehydration. Adaptation to the changing water status of the plant plays a crucial role during this process. This review summarizes the compositional and structural variations, signal transduction and changes of gene expression which occur in cell walls of resurrection plants during dehydration and rehydration.

3.
J Exp Bot ; 69(15): 3773-3784, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29757404

RESUMO

Reproductive structures of plants (e.g. seeds) and vegetative tissues of resurrection plants can tolerate desiccation. Many genes encoding desiccation-related proteins (DRPs) have been identified in the resurrection plant Craterostigma plantagineum, but the function of these genes remains mainly hypothetical. Here, the importance of the DRP gene pcC13-62 for desiccation tolerance is evaluated by analysing its expression in C. plantagineum and in the closely related desiccation-tolerant species Lindernia brevidens and the desiccation-sensitive species Lindernia subracemosa. Quantitative analysis revealed that pcC13-62 transcripts accumulate at a much lower level in desiccation-sensitive species than in desiccation-tolerant species. The study of pcC13-62 promoters from these species demonstrated a correlation between promoter activity and gene expression levels, suggesting transcriptional regulation of gene expression. Comparison of promoter sequences identified a dehydration-responsive element motif in the promoters of tolerant species that is required for dehydration-induced ß-glucuronidase (GUS) accumulation. We hypothesize that variations in the regulatory sequences of the pcC13-62 gene occurred to establish pcC13-62 expression in vegetative tissues, which might be required for desiccation tolerance. The pcC13-62 promoters could also be activated by salt stress in Arabidopsis thaliana plants stably transformed with promoter::GUS constructs.


Assuntos
Craterostigma/genética , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Craterostigma/fisiologia , Dessecação , Genes Reporter , Variação Genética , Proteínas de Plantas/genética , Salinidade , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...