Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(13): eaay6994, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32284967

RESUMO

The clinical use of human bone marrow-derived mesenchymal stem cells (BM-MSCs) has been hampered by their poor performance after transplantation into failing hearts. Here, to improve the therapeutic potential of BM-MSCs, we developed a strategy termed in vivo priming in which BM-MSCs are primed in vivo in myocardial infarction (MI)-induced hearts through genetically engineered hepatocyte growth factor-expressing MSCs (HGF-eMSCs) that are encapsulated within an epicardially implanted 3D cardiac patch. Primed BM-MSCs through HGF-eMSCs exhibited improved vasculogenic potential and cell viability, which ultimately enhanced vascular regeneration and restored cardiac function to the MI hearts. Histological analyses further demonstrated that the primed BM-MSCs survived longer within a cardiac patch and conferred cardioprotection evidenced by substantially higher numbers of viable cardiomyocytes in the MI hearts. These results provide compelling evidence that this in vivo priming strategy can be an effective means to enhance the cardiac repair of MI hearts.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Cardiopatias/terapia , Fator de Crescimento de Hepatócito/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Técnicas de Cultura de Células , Terapia Baseada em Transplante de Células e Tecidos/métodos , Modelos Animais de Doenças , Expressão Gênica , Engenharia Genética , Cardiopatias/etiologia , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Suínos
2.
Am J Sports Med ; 48(4): 947-958, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32167836

RESUMO

BACKGROUND: Chronic full-thickness rotator cuff tears (FTRCTs) represent a major clinical concern because they show highly compromised healing capacity. PURPOSE: To evaluate the efficacy of using a 3-dimensional (3D) bioprinted scaffold with human umbilical cord blood (hUCB)-mesenchymal stem cells (MSCs) for regeneration of chronic FTRCTs in a rabbit model. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 32 rabbits were randomly assigned to 4 treatment groups (n = 8 per group) at 6 weeks after a 5-mm FTRCT was created on the supraspinatus tendon. Group 1 (G1-SAL) was transplanted with normal saline. Group 2 (G2-MSC) was transplanted with hUCB-MSCs (0.2 mL, 1 × 106) into FTRCTs. Group 3 (G3-3D) was transplanted with a 3D bioprinted construct without MSCs, and group 4 (G4-3D+MSC) was transplanted with a 3D bioprinted construct containing hUCB-MSCs (0.2 mL, 1 × 106 cells) into FTRCTs. All 32 rabbits were euthanized at 4 weeks after treatment. Examination of gross morphologic changes and histologic results was performed on all rabbits after sacrifice. Motion analysis was also performed before and after treatment. RESULTS: In G4-3D+MSC, newly regenerated collagen type 1 fibers, walking distance, fast walking time, and mean walking speed were greater than those in G2-MSC based on histochemical and motion analyses. In addition, when compared with G3-3D, G4-3D+MSC showed more prominent regenerated tendon fibers and better parameters of motion analysis. However, there was no significant difference in gross tear size among G2-MSC, G3-3D, and G4-3D+MSC, although these groups showed significant decreases in tear size as compared with the control group (G1-SAL). CONCLUSION: Findings of this study show that a tissue engineering strategy based on a 3D bioprinted scaffold filled with hUCB-MSCs can improve the microenvironment for regenerative processes of FTRCT without any surgical repair. CLINICAL RELEVANCE: In the case of rotator cuff tear, the cell loss of the external MSCs can be increased by exposure to synovial fluid. Therefore, a 3D bioprinted scaffold in combination with MSCs without surgical repair may be effective in increasing cell retention in FTRCT.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Lesões do Manguito Rotador , Animais , Sangue Fetal , Humanos , Coelhos , Distribuição Aleatória , Regeneração , Lesões do Manguito Rotador/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...