Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(14): e2307265, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38126918

RESUMO

Metal halide perovskite solar cells (PSCs) are infamous for their batch-to-batch and lab-to-lab irreproducibility in terms of stability and performance. Reproducible fabrication of PSCs is a critical requirement for market viability and practical commercialization. PSC irreproducibility plagues all levels of the community; from institutional research laboratories, start-up companies, to large established corporations. In this work, the critical function of atmospheric humidity to regulate the crystallization and stabilization of formamidinium lead triiodide (FAPbI3) perovskites is unraveled. It is demonstrated that the humidity content during processing induces profound variations in perovskite stoichiometry, thermodynamic stability, and optoelectronic quality. Almost counterintuitively, it is shown that the presence of humidity is perhaps indispensable to reproduce phase-stable and efficient FAPbI3-based PSCs.

2.
Nanotechnology ; 35(13)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38100835

RESUMO

The importance of light management for perovskite solar cells (PSCs) has recently been emphasized because their power conversion efficiency approaches their theoretical thermodynamic limits. Among optical strategies, anti-reflection (AR) coating is the most widely used method to reduce reflectance loss and thus increase light-harvesting efficiency. Monolayer MgF2is a well-known AR material because of its optimal refractive index, simple fabrication process, and physical and chemical durabilities. Nevertheless, quantitative estimates of the improvement achieved by the MgF2AR layer are lacking. In this study, we conducted theoretical and experimental evaluations to assess the AR effect of MgF2on the performance of formamidinium lead-triiodide PSCs. A sinusoidal tendency to enhance the short-circuit current density (JSC) was observed depending on the thickness, which was attributed to the interference of the incident light. A transfer matrix method-based simulation was conducted to calculate the optical losses, demonstrating the critical impact of reflectance loss on theJSCimprovement. The predictedJSCs values, depending on the perovskite thickness and the incident angle, are also presented. The combined use of experimental and theoretical approaches offers notable advantages, including accurate interpretation of photocurrent generation, detailed optical analysis of the experimental results, and device performance predictions under unexplored conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...