Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 599: 828-836, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33989935

RESUMO

HYPOTHESIS: Combination of microwave irradiation (MWI) and ionic liquids (IL) is widely used for the synthesis of nanoparticles (NP) via decarbonylation of zero-valent metal carbonyl precursors. However, we carefully raise a question as to whether this combination is always beneficial. Upon MWI, highly-absorbing materials such as ILs would be subject to local intense heating, likely resulting in the occurrence of localized chemical decomposition. The decomposition is expected to influence the growth mechanism of NPs due to changes in the electrostatic and steric effects. If the assumption is valid, it should be possible to decompose IL and destabilize the NPs by modifying the amplitude of the incident microwaves. In other words, it should also be possible to control the particle aggregation by circumventing the decomposition of the IL. EXPERIMENTS: A series of comparative studies were conducted using a model system (i.e. [BMIm][BF4] and Ru3(CO)12). Variables were systematically controlled. After MWI, the decrease in colloidal stability of NPs was identified. FINDINGS: In the formation of Ru NPs via decarbonylation, the association between incident microwave intensity, chemical decomposition of IL, and initiation of particle aggregation has been demonstrated. Conditions that can accelerate or alleviate the decomposition and the aggregation are also corroborated.

2.
PLoS One ; 14(5): e0214493, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075102

RESUMO

Digital public displays installed in various locations provide valuable information for the passers-by. However, the static characteristic of the digital public display limits the consumption of the displayed content to a small area. Personal mobile devices such as smartphones are now capable of interacting with digital public displays, which enables the passers-by to "take-away" the content and consume it on-the-go. This process requires device binding, content selection, and transfer between the two devices. In this paper, we propose a device binding method which utilizes the content brightness changing pattern as a unique content ID on the public display and an illuminance sensor on the mobile to bind and transfer between two devices. We conducted performance evaluations for binding algorithm robustness in different conditions. Also comparative studies among other binding interaction methods were conducted. Our results show that our proposed method performed stably across the various conditions and overall performance in interaction completion time and error rate was similar or superior to the existing methods.


Assuntos
Meios de Comunicação , Apresentação de Dados , Iluminação , Algoritmos , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...