Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Korean J Physiol Pharmacol ; 28(1): 31-38, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154962

RESUMO

As in type 1 diabetes, the loss of pancreatic ß-cells leads to insulin deficiency and the subsequent development of hyperglycemia. Exercise has been proposed as a viable remedy for hyperglycemia. Lithium, which has been used as a treatment for bipolar disorder, has also been shown to improve glucose homeostasis under the conditions of obesity and type 2 diabetes by enhancing the effects of exercise on the skeletal muscles. In this study, we demonstrated that unlike in obesity and type 2 diabetic conditions, under the condition of insulin-deficient type 1 diabetes, lithium administration attenuated pancreatic a-cell mass without altering insulin-secreting ß-cell mass, implying a selective impact on glucagon production. Additionally, we also documented that lithium downregulated the hepatic gluconeogenic program by decreasing G6Pase protein levels and upregulating AMPK activity. These findings suggest that lithium's effect on glucose metabolism in type 1 diabetes is mediated through a different mechanism than those associated with exerciseinduced metabolic changes in the muscle. Therefore, our research presents the novel therapeutic potential of lithium in the treatment of type 1 diabetes, which can be utilized along with insulin and independently of exercise.

2.
Metabolites ; 13(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36837798

RESUMO

Gamma-hydroxybutyric acid (GHB) is a potent, short-acting central nervous system depressant as well as an inhibitory neurotransmitter or neuromodulator derived from gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter. The sodium salt of GHB, sodium oxybate, has been used for the treatment of narcolepsy and cataplexy, whereas GHB was termed as a date rape drug or a club drug in the 1990s. Ethanol is the most co-ingested drug in acute GHB intoxication. In this review, the latest findings on the combined effects of GHB and ethanol are summarized from toxicokinetic and toxicodynamic perspectives. For this purpose, we mainly discussed the pharmacology and toxicology of GHB, GHB intoxication under alcohol consumption, clinical cases of the combined intoxication of GHB and ethanol, and previous studies on the toxicokinetic and toxicodynamic interactions between GHB and ethanol in humans, animals, and an in vitro model. The combined administration of GHB and ethanol enhanced sedation and cardiovascular dysfunction, probably by the additive action of GABA receptors, while toxicokinetic changes of GHB were not significant. The findings of this review will contribute to clinical and forensic interpretation related to GHB intoxication. Furthermore, this review highlights the significance of studies aiming to further understand the enhanced inhibitory effects of GHB induced by the co-ingestion of ethanol.

3.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360969

RESUMO

Physical exercise reduces the extent, duration, and frequency of drug use in drug addicts during the drug initiation phase, as well as during prolonged addiction, withdrawal, and recurrence. However, information about exercise-induced neurobiological changes is limited. This study aimed to investigate the effects of forced moderate endurance exercise training on methamphetamine (METH)-induced behavior and the associated neurobiological changes. Male Sprague Dawley rats were subjected to the administration of METH (1 mg/kg/day, i.p.) and/or forced moderate endurance exercise (treadmill running, 21 m/min, 60 min/day) for 2 weeks. Over the two weeks, endurance exercise training significantly reduced METH-induced hyperactivity. METH and/or exercise treatment increased striatal dopamine (DA) levels, decreased p(Thr308)-Akt expression, and increased p(Tyr216)-GSK-3ß expression. However, the phosphorylation levels of Ser9-GSK-3ß were significantly increased in the exercise group. METH administration significantly increased the expression of NMDAr1, CaMKK2, MAPKs, and PP1 in the striatum, and exercise treatment significantly decreased the expression of these molecules. Therefore, it is apparent that endurance exercise inhibited the METH-induced hyperactivity due to the decrease in GSK-3ß activation by the regulation of the striatal glutamate signaling pathway.


Assuntos
Ácido Glutâmico/metabolismo , Metanfetamina/toxicidade , Condicionamento Físico Animal/métodos , Agitação Psicomotora/terapia , Corrida , Animais , Corpo Estriado/metabolismo , Dopamina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Agitação Psicomotora/etiologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
4.
Pflugers Arch ; 473(4): 673-682, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33660027

RESUMO

The purpose of this study was to investigate the effect of lithium on glucose disposal in a high-fat diet-induced type 2 diabetes mellitus (T2DM) and streptozotocin-induced type 1 diabetes mellitus (T1DM) animal model along with low-volume exercise and low-dose insulin. Lithium decreased body weight, fasting plasma glucose, and insulin levels when to treat with low-volume exercise training; however, there were no adaptive responses like an increase in GLUT4 content and translocation factor levels. We discovered that lithium enhanced glucose uptake by acute low-volume exercise-induced glycogen breakdown, which was facilitated by the dephosphorylation of serine 473-AKT (Ser473-AKT) and serine 9-GSK3ß. In streptozotocin-induced T1DM mice, Li/low-dose insulin facilitates glucose uptake through increase the level of exocyst complex component 7 (Exoc7) and Ser473-AKT. Thus, lithium enhances acute exercise-induced glycogen breakdown and insulin-induced AKT activation and could serve as a candidate therapeutic target to regulate glucose level of DM patients.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Lítio/farmacologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/métodos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar
5.
Metabolites ; 11(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578991

RESUMO

γ-Hydroxybutyric acid (GHB) is an endogenous short chain fatty acid that acts as a neurotransmitter and neuromodulator in the mammalian brain. It has often been illegally abused or misused due to its strong anesthetic effect, particularly in drug-facilitated crimes worldwide. However, proving its ingestion is not straightforward because of the difficulty in distinguishing between endogenous and exogenous GHB, as well as its rapid metabolism. Metabolomics and metabolism studies have recently been used to identify potential biomarkers of GHB exposure. This mini-review provides an overview of GHB-associated metabolic alterations and explores the potential of metabolites for application as biomarkers of GHB exposure. For this, we discuss the biosynthesis and metabolism of GHB, analytical issues of GHB in biological samples, alterations in metabolic pathways, and changes in the levels of GHB conjugates in biological samples from animal and human studies. Metabolic alterations in organic acids, amino acids, and polyamines in urine enable discrimination between GHB-ingested animals or humans and controls. The potential of GHB conjugates has been investigated in a variety of clinical settings. Despite the recent growth in the application of metabolomics and metabolism studies associated with GHB exposure, it remains challenging to distinguish between endogenous and exogenous GHB. This review highlights the significance of further metabolomics and metabolism studies for the discovery of practical peripheral biomarkers of GHB exposure.

6.
Toxicol Res ; 36(3): 275-282, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32685432

RESUMO

The purpose of this study was to investigate the protective effects of beet root (Beta vulgaris var. rubra) in lipopolysaccharide (LPS) and alcohol induced liver damage. Beta vulgaris ethanol extract (BVEE) showed good antioxidant activity in the contents of polyphenol and flavonoid compounds, and the electron-donating ability and ABTS+ radical scavenging activity. As for anti-inflammatory effect in RAW 264.7 cells, inhibition rate of nitric oxide production was increased in dose dependent manner. In hepatotoxicity model induced by LPS and alcohol in rat, BVEE significantly decreased serum AST, ALT and γ-GTP concentrations in a dose-dependent manner. The histopathological changes after H&E staining showed that fat accumulation and inflammatory cell infiltration were decreased by BVEE. The collagen fibers around the central lobule observed by Masson's trichrome staining were also decreased by BVEE. In addition, as for the immunohistochemical staining and Transmission electron microscopy, BVEE improved morphological characteristics of damaged liver lesion. The increased mRNA expressions of NF-κB, MAPK1, MAPK3, CYP2E1, and α-SMA were significantly decreased in BVEE treated group. These results indicated that BVEE would have protective effects in hepatotoxicity by altering various indicators related to the liver damage induced by LPS or alcohol.

7.
Toxicol Res ; 36(3): 283, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32687547

RESUMO

[This corrects the article DOI: 10.1007/s43188-019-00030-4.].

8.
Toxicol Res ; 35(4): 353-359, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31636846

RESUMO

The purpose of this study was to investigate the effect of 7-MEGA™ 500 on the improvement of skin aging in an UVB-induced photo-aging model of hairless mice. The dorsal skin of hairless mice was exposed to UVB three times a week for 12 weeks to induce skin wrinkle. After inducing the wrinkle, 7-MEGA™ 500 was orally administered once a day for 4 weeks. Skin thickness, skin barrier function, and wrinkle indicators were improved by treatment with 7-MEGA™ 500. Both gene and protein expression levels of MMP-3 and c-Jun in skin were significantly decreased by 7-MEGA™ 500. Therefore, the intake of 7-MEGA™ 500 is thought to have a positive effect on the improvement of skin aging, although further studies are needed.

9.
Braz J Med Biol Res ; 51(10): e7508, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30066723

RESUMO

The purpose of the present study was to compare the influence of aerobic exercise (AE) lasting 12 weeks to that of resistance exercise (RE) of the same duration on endoplasmic reticulum (ER) stress and mitochondrial biogenesis in the cardiac muscle of middle-aged obese rats. Obesity was induced in thirty 50-week-old male Sprague Dawley rats over 6 weeks by administration of a high-fat diet. The rats were then subjected to treadmill-running (AE) and ladder-climbing (RE) exercises 3 times per week for 12 weeks. Rats in the AE group showed significantly lower increases in body weight and intraperitoneal fat than those in the sedentary control (SC) group (P<0.05). The 12-week exercise regimes resulted in a significant increase in expression of mitochondrial biogenesis markers and levels of peroxisome proliferator-activated receptor gamma coactivator 1α in the cardiac muscle (P<0.05). Phosphorylation of PKR-like ER kinase, an ER stress marker, decreased significantly (P<0.05) after the exercise training. Although a trend for decreased C/EBP homologous protein (CHOP) expression was observed in both exercise groups, only the AE group had a statistically significant decrease (P<0.05). Levels of GRP78, an ER stress marker that protects cardiac muscle, did not significantly differ among the groups. Although only the AE group decreased body weight and fat mass, the two exercise regimes had similar effects on cardiac muscle with the exception of CHOP. Therefore, we suggest that both AE, which results in weight loss, and high-intensity RE, though not accompanied by weight loss, protect obese cardiac muscle effectively.


Assuntos
Dieta Hiperlipídica , Estresse do Retículo Endoplasmático/fisiologia , Miocárdio/metabolismo , Obesidade/complicações , Biogênese de Organelas , Condicionamento Físico Animal/fisiologia , Animais , Masculino , Obesidade/fisiopatologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Treinamento Resistido , Corrida , Fatores de Tempo
10.
J Obes Metab Syndr ; 27(3): 186-194, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31089561

RESUMO

BACKGROUND: It is important for older adults to prevent sarcopenia, but there are not currently effective methods to maintain or improve skeletal muscle function or immune function in this population. The goal of this study was to observe the effects of a 12-week resistance exercise program with fermented soybean supplementation on glucose tolerance and myokine expression in middle-aged obese rats in regard to body composition and immune senescence. METHODS: Subjects were randomly assigned to four groups: control (CON), soybean (SO), resistance exercise (RE), and soybean plus resistance exercise (SR). Resistance exercise involved ladder climbing, and soybean supplementation comprised 24% of total calories from soybean protein. Obesity was induced with 6 weeks of a high-fat diet, and then the group-specific procedures were conducted for the following 12 weeks. RESULTS: There were no significant differences between the groups in regard to daily dietary intake and body weight. The SO group had significantly higher intraperitoneal fat levels compared to the CON group (P<0.05), and a significantly lower lean body mass (P<0.05). The glycemic response of the SO group and SR group showed significantly higher improvements compared to the CON group and RE group (P<0.05). The expression of myokines related to immune senescence was significantly lower in the SO group (P<0.05). CONCLUSION: Fermented soy beans helped improve glucose tolerance when it was applied with and without resistance exercise, with a significant reduction in the expression of inflammatory factors related to immune senescence in skeletal muscle.

11.
Braz. j. med. biol. res ; 51(10): e7508, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-951712

RESUMO

The purpose of the present study was to compare the influence of aerobic exercise (AE) lasting 12 weeks to that of resistance exercise (RE) of the same duration on endoplasmic reticulum (ER) stress and mitochondrial biogenesis in the cardiac muscle of middle-aged obese rats. Obesity was induced in thirty 50-week-old male Sprague Dawley rats over 6 weeks by administration of a high-fat diet. The rats were then subjected to treadmill-running (AE) and ladder-climbing (RE) exercises 3 times per week for 12 weeks. Rats in the AE group showed significantly lower increases in body weight and intraperitoneal fat than those in the sedentary control (SC) group (P<0.05). The 12-week exercise regimes resulted in a significant increase in expression of mitochondrial biogenesis markers and levels of peroxisome proliferator-activated receptor gamma coactivator 1α in the cardiac muscle (P<0.05). Phosphorylation of PKR-like ER kinase, an ER stress marker, decreased significantly (P<0.05) after the exercise training. Although a trend for decreased C/EBP homologous protein (CHOP) expression was observed in both exercise groups, only the AE group had a statistically significant decrease (P<0.05). Levels of GRP78, an ER stress marker that protects cardiac muscle, did not significantly differ among the groups. Although only the AE group decreased body weight and fat mass, the two exercise regimes had similar effects on cardiac muscle with the exception of CHOP. Therefore, we suggest that both AE, which results in weight loss, and high-intensity RE, though not accompanied by weight loss, protect obese cardiac muscle effectively.


Assuntos
Animais , Masculino , Ratos , Condicionamento Físico Animal/fisiologia , Biogênese de Organelas , Estresse do Retículo Endoplasmático/fisiologia , Dieta Hiperlipídica , Miocárdio/metabolismo , Obesidade/complicações , Corrida , Fatores de Tempo , Distribuição Aleatória , Ratos Sprague-Dawley , Treinamento Resistido , Obesidade/fisiopatologia
12.
Korean J Physiol Pharmacol ; 21(6): 633-641, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29200906

RESUMO

The aim of this study is to investigate the effects of intermittent ladder-climbing exercise training on mitochondrial biogenesis and ER stress of the cardiac muscle in high fat diet-induced obese middle-aged rats. We induced obesity over 6 weeks of period in 40 male Sprague-Dawley rats around 50 weeks old, and were randomly divided into four experimental groups: chow, HFD, exercise+HFD, and exercise+chow. The exercising groups underwent high-intensity intermittent training using a ladder-climbing and weight exercise 3 days/week for a total of 8 weeks. High-fat diet and concurrent exercise resulted in no significant reduction in body weight but caused a significant reduction in visceral fat weight (p<0.05). Expression of PPARδ increased in the exercise groups and was significantly increased in the high-fat diet+exercise group (p<0.05). Among the ER stress-related proteins, the expression levels of p-PERK and CHOP, related to cardiac muscle damage, were significantly higher in the cardiac muscle of the high-fat diet group (p<0.05), and were significantly reduced by intermittent ladder-climbing exercise training (p<0.05). Specifically, this reduction was greater when the rats underwent exercise after switching back to the chow diet with a reduced caloric intake. Collectively, these results suggest that the combination of intermittent ladder-climbing exercise training and a reduced caloric intake can decrease the levels of ER stress-related proteins that contribute to cardiac muscle damage in obesity and aging. However, additional validation is required to understand the effects of these changes on mitochondrial biogenesis during exercise.

13.
J Nutr Sci Vitaminol (Tokyo) ; 63(6): 365-371, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29332897

RESUMO

While lithium is known to stimulate glucose transport into skeletal muscle, the mechanisms of the increased glucose transport by lithium in skeletal muscle are not well defined yet. We excised epitrochlearis muscles from male Wistar rats and measured the transport rates of a glucose analog into lithium-, insulin-, and muscular contraction-stimulated skeletal muscle tissue and we also analyzed the levels of cell surface glucose transport 4 using a photolabeling and multicolor immunofluorescence method. In addition, we generated a cell line that stably expresses myc-tagged GLUT4 to measure the rates of GLUT4 internalization and externalization. Lithium significantly increased 2-DG glucose transport rate in skeletal muscles; however, it was significantly lower than the stimulation induced by the maximum concentration of insulin or tetanic contraction. But co-treatment of lithium with insulin or tetanic contraction increased glucose transport rate by ∼200% more than lithium alone. When skeletal muscle tissues were treated with lithium, insulin, and muscular contraction, the levels of cell surface GLUT4 protein contents were increased similarly by ∼6-fold compared with the basal levels. When insulin or lithium stimuli were maintained, the rate of GLUT4myc internalization was significantly lower, and lithium was found to suppress the internalization of GLUT4myc more strongly. The lithium-induced increase in glucose uptake of skeletal muscles appears to increase in cell surface GLUT4 levels caused by decreased internalization of GLUT4. It is concluded that co-treatment of lithium with insulin and muscular contraction had a synergistic effect on glucose transport rate in skeletal muscle.


Assuntos
Glucose/metabolismo , Lítio/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Desoxiglucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Masculino , Contração Muscular/fisiologia , Ratos , Ratos Wistar
14.
Obes Res Clin Pract ; 10 Suppl 1: S125-S132, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26483160

RESUMO

OBJECTIVE: This study analysed the risk factors associated with metabolic syndrome through the interaction between ACTN3 and ACE gene polymorphism in Korean children. METHODS: The subjects of the study consisted of elementary school students (n=788, age 10.10±0.07 yr). The anthropometric parameters, blood lipid profiles, and metabolic markers were compared among groups of the ACE I/D or the ACTN3 R577X polymorphisms. RESULTS: The subjects with the DD genotype showed significantly higher systolic blood pressure than the subjects with the II and ID genotype of the ACE gene polymorphism. XX genotype had significantly lower waist-hip ratio than those with RR genotype of the ACTN3 gene polymorphism. Also, the subjects with XX genotype exhibited significantly higher blood HDL cholesterol level than those with RR or RX genotype. The interaction of ACTN3 and ACE gene polymorphism in subjects having both ACE DD and ACTN3 RR genotypes demonstrated a significantly higher metabolic syndrome score than any other groups. CONCLUSION: The children having both ACTN3 RR or RX genotype and ACE DD genotype showed high systolic blood pressure and low blood HDL cholesterol level, which may be considered a high-risk in metabolic syndrome.


Assuntos
Actinina/genética , Povo Asiático/genética , Genótipo , Síndrome Metabólica/genética , Polimorfismo Genético , Pressão Sanguínea/genética , Criança , HDL-Colesterol/sangue , HDL-Colesterol/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Instituições Acadêmicas , Estudantes , Relação Cintura-Quadril
15.
J Physiol Sci ; 65(6): 515-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26223833

RESUMO

We investigated the change in myokine expression related to hypertrophy (IL-4, IL-6, IL-10) and atrophy (TNF-α, NFκB, IL-1ß) in middle-aged rats after resistance exercise with ladder climbing. 50- and 10-week-old male Wistar rats were randomly assigned to two groups: the sedentary and exercise groups. The exercise groups underwent a ladder-climbing exercise for 8 weeks. While the tibialis anterior muscle mass in the young group significantly increased after the ladder-climbing exercise, the middle-aged group did not show any changes after undergoing the same exercise. To understand the molecular mechanism causing this difference, we analyzed the change in hypertrophy- and atrophy-related myokine levels from the tibialis anterior muscle. After 8 weeks of ladder-climbing exercise, the IL-4 and IL-10 protein levels did not change. However, the IL-6 level significantly increased after exercise training, but the amount of increase in the young training group was higher than in the middle-aged training group. IL-1ß and TNF-α as well as NFκB protein levels were significantly higher in the middle-aged group than in the young group. Except for TNF-α, exercise training did not affect IL-1ß and NFκB protein levels. The TNF-α level significantly decreased in the middle-aged exercise training group. AMPK and PGC-1α levels also significantly increased after exercise training, but there was no difference between age-related groups. Therefore, 8-week high-intensity exercise training using ladder climbing downregulates the skeletal muscle production of myokine involved in atrophy and upregulates hypertrophic myokine. However, the extent of these responses was lower in the middle-aged than young group.


Assuntos
Envelhecimento , Citocinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Atividade Motora/fisiologia , Animais , Western Blotting , Peso Corporal , Citocinas/genética , Ingestão de Alimentos , Masculino , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Distribuição Aleatória , Ratos
16.
Integr Med Res ; 3(4): 155-160, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28664092

RESUMO

Skeletal muscle is adapting to the needs of the body by changes of various gene expression that control mitochondrial biogenesis, angiogenesis, and the composition of muscle fiber types. Recently, it was revealed that PGC-1α, which is an auxiliary transcription factor, plays a key role in the aforementioned adaptation phenomena. It means that various signal transduction systems within muscle directly affect the expression and activation of PGC-1α and also PGC-1s activates various programs for muscle adaptation. Therefore, this review assessed PGC-1α to understand the reaction and adaptation phenomena of muscle against the biological stimulus such as exercise and came to the conclusion that PGC-1α and PGC-1ß significantly affect skeletal muscle in various ways, and also have an affect on the increase of exercise capacity, inducing of angiogenesis and the prevention of muscle atrophy and degeneration.

17.
Mol Cell Biol ; 32(14): 2837-48, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22586267

RESUMO

AMP activated protein kinase (AMPK) plays a key role in the regulatory network responsible for maintaining systemic energy homeostasis during exercise or nutrient deprivation. To understand the function of the regulatory ß2 subunit of AMPK in systemic energy metabolism, we characterized ß2 subunit-deficient mice. Using these mutant mice, we demonstrated that the ß2 subunit plays an important role in regulating glucose, glycogen, and lipid metabolism during metabolic stress. The ß2 mutant animals failed to maintain euglycemia and muscle ATP levels during fasting. In addition, ß2-deficient animals showed classic symptoms of metabolic syndrome, including hyperglycemia, glucose intolerance, and insulin resistance when maintained on a high-fat diet (HFD), and were unable to maintain muscle ATP levels during exercise. Cell surface-associated glucose transporter levels were reduced in skeletal muscle from ß2 mutant animals on an HFD. In addition, they displayed poor exercise performance and impaired muscle glycogen metabolism. These mutant mice had decreased activation of AMPK and deficits in PGC1α-mediated transcription in skeletal muscle. Our results highlight specific roles of AMPK complexes containing the ß2 subunit and suggest the potential utility of AMPK isoform-specific pharmacological modulators for treatment of metabolic, cardiac, and neurological disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Jejum/metabolismo , Glucose/metabolismo , Homeostase , Redes e Vias Metabólicas , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Esforço Físico/fisiologia , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ribonucleotídeos/farmacologia , Estresse Fisiológico , Distribuição Tecidual
18.
Metabolism ; 61(11): 1615-21, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22571876

RESUMO

OBJECTIVE: In a previous study, it was found that a ginseng berry extract with a high content of the ginsenoside Re normalized blood glucose in ob/ob mice. The objective of this study was to evaluate the effect of the ginsenoside Re on insulin resistance of glucose transport in muscles of rats made insulin resistant with a high-fat diet. MATERIAL/METHOD: Rats were fed either rat chow or a high-fat diet for 5 weeks. The rats were then euthanized, and insulin stimulated glucose transport activity was measured in epitrochlearis and soleus muscle strips in vitro. RESULTS: Treatment of muscles with Re alone had no effect on glucose transport. The high-fat diet resulted in ~50% decreases in insulin responsiveness of GLUT4 translocation to the cell surface and glucose transport in epitrochlearis and soleus muscles. Treatment of muscles with Re in vitro for 90 min completely reversed the high-fat diet-induced insulin resistance of glucose transport and GLUT4 translocation. This effect of Re is specific for insulin stimulated glucose transport, as Re treatment did not reverse the high-fat diet-induced resistance of skeletal muscle glucose transport to stimulation by contractions or hypoxia. CONCLUSIONS: Our results show that the ginsenoside Re induces a remarkably rapid reversal of high-fat diet-induced insulin resistance of muscle glucose transport by reversing the impairment of insulin-stimulated GLUT4 translocation to the cell surface.


Assuntos
Ginsenosídeos/farmacologia , Resistência à Insulina , Músculo Esquelético/fisiopatologia , Adenilato Quinase/metabolismo , Animais , Estimulação Elétrica , Glucose/metabolismo , Técnicas In Vitro , Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
19.
Am J Physiol Endocrinol Metab ; 297(1): E236-41, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19435855

RESUMO

Elevated plasma free fatty acids (FFA) cause insulin resistance and are thought to play a key role in mediating insulin resistance in patients with the metabolic syndrome (MTS) and type 2 diabetes mellitus (DM). Two experimental models used to study the mechanisms responsible for insulin resistance in patients are high-fat diet-fed rodents and administration of triglycerides and heparin to raise plasma FFA. As evidence that insulin resistance in high-fat diet-fed rats is due to high FFA, it has been reported that the insulin resistance is rapidly reversed by an overnight fast, a high-glucose meal, and an exercise bout. If true, these findings would invalidate the high-fat diet-fed rodent as a model for MTS or type 2 DM, because insulin resistance is not rapidly reversed by these treatments in patients. The purpose of this study was to determine whether diet-induced insulin resistance is, in fact, rapidly reversible. Incubation of muscles in vitro rapidly reversed insulin resistance induced by administration of triglycerides and heparin, but not by a high-fat diet. An overnight fast and a high-glucose meal were followed by a large increase in insulin-stimulated muscle glucose transport. However, these are adaptive responses, rather than reversals of insulin resistance, because they also occurred in muscles of insulin-sensitive, chow-fed control rats. Our results show that insulin resistance induced by high FFA, i.e., Randle glucose-fatty acid cycle, is transient. In contrast, the insulin resistance induced by a high-fat diet does not reverse rapidly.


Assuntos
Gorduras na Dieta/farmacologia , Resistência à Insulina , Músculo Esquelético/efeitos dos fármacos , Animais , Transporte Biológico , Glicemia/metabolismo , Desoxiglucose/farmacocinética , Desoxiglucose/farmacologia , Dieta , Jejum/metabolismo , Jejum/fisiologia , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...