Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 19(1): 77, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693438

RESUMO

A nanofiber-based composite nonwoven fabric was fabricated for hemostatic wound dressing, integrating polyvinyl alcohol (PVA), kaolin, and γ-chitosan extracted from three type of insects. The γ-chitosan extracted from Protaetia brevitarsis seulensis exhibited the highest yield at 21.5%, and demonstrated the highest moisture-binding capacity at 535.6%. In the fabrication process of PVA/kaolin/γ-chitosan nonwoven fabrics, an electrospinning technique with needle-less and mobile spinneret was utilized, producing nanofibers with average diameters ranging from 172 to 277 nm. The PVA/kaolin/γ-chitosan nonwoven fabrics demonstrated enhanced biocompatibility, with cell survival rates under certain compositions reaching up to 86.9% (compared to 74.2% for PVA). Furthermore, the optimized fabric compositions reduced blood coagulation time by approximately 2.5-fold compared to PVA alone, highlighting their efficacy in hemostasis. In other words, the produced PVA/kaolin/γ-chitosan nonwoven fabrics offer potential applications as hemostatic wound dressings with excellent biocompatibility and improved hemostatic performance.

2.
Bioengineering (Basel) ; 11(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38671758

RESUMO

The purposes of this study are to establish and validate a finite element (FE) model using finite element analysis methods and to identify optimal loading conditions to simulate masticatory movement. A three-dimensional FE model of the maxillary and mandibular cortical bone, cancellous bone, and gingiva was constructed based on edentulous cone-beam-computed tomography data. Dental computer-aided design software was used to design the denture base and artificial teeth to produce a complete denture. Mesh convergence was performed to derive the optimal mesh size, and validation was conducted through comparison with mechanical test results. The mandible was rotated step-by-step to induce movements similar to actual mastication. Results showed that there was less than a 6% difference between the mechanical test and the alveolar bone-complete denture. It opened 10° as set in the first stage, confirming that the mouth closed 7° in the second stage. Occlusal contact occurred between the upper and lower artificial teeth as the mouth closed the remaining angle of 3° in the third stage while activating the masseter muscle. These results indicate that the FE model and masticatory loading conditions developed in this study can be applied to analyze biomechanical effects according to the wearing of dentures with various design elements applied.

3.
Bioengineering (Basel) ; 11(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38671765

RESUMO

The occurrence of bone diseases has been increasing rapidly, in line with the aging population. A representative spinal fusion material, polyetheretherketone (PEEK), is advantageous in this regard as it can work in close proximity to the elastic modulus of cancellous bone. However, if it is used without surface modification, the initial osseointegration will be low due to lack of bioactivity, resulting in limitations in surgical treatment. In this study, we aimed to modify the surface of PEEK cages to a hydrophilic surface by coating with polyethylene glycol (PEG), hyaluronic acid (HA), and polydopamine (PDA), and to analyze whether the coated surface exhibits improved bioactivity and changes in mechanical properties for orthopedic applications. Material properties of coated samples were characterized and compared with various PEEK groups, including PEEK, PEEK-PEG, PEEK-HA, and PEEK-PDA. In an in vitro study, cell proliferation was found to be enhanced on PDA-coated PEEK; it was approximately twice as high compared to the control group. In addition, mechanical properties, including static and torsion, were not affected by the presence of the coating. Thus, the results suggest that PEEK-PDA may have the potential for clinical application in fusion surgery for spinal diseases, as it may improve the rate of osseointegration.

4.
Mar Drugs ; 21(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38132932

RESUMO

The inherent self-repair abilities of the body often fall short when it comes to addressing injuries in soft tissues like skin, nerves, and cartilage. Tissue engineering and regenerative medicine have concentrated their research efforts on creating natural biomaterials to overcome this intrinsic healing limitation. This comprehensive review delves into the advancement of such biomaterials using substances and components sourced from marine origins. These marine-derived materials offer a sustainable alternative to traditional mammal-derived sources, harnessing their advantageous biological traits including sustainability, scalability, reduced zoonotic disease risks, and fewer religious restrictions. The use of diverse engineering methodologies, ranging from nanoparticle engineering and decellularization to 3D bioprinting and electrospinning, has been employed to fabricate scaffolds based on marine biomaterials. Additionally, this review assesses the most promising aspects in this field while acknowledging existing constraints and outlining necessary future steps for advancement.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Animais , Engenharia Tecidual/métodos , Medicina Regenerativa/métodos , Mamíferos
5.
Bioengineering (Basel) ; 10(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38135955

RESUMO

Computer modeling and simulation (CM&S) technology is widely used in the medical device industry due to its advantages such as reducing testing time and costs. However, the developer's parameter settings during the modeling and simulation process can have a significant impact on the results. This study developed a test model for the rotational shear strength of dental implants and the constraint force of total knee replacements based on CM&S technology and proposes ideal parameters to ensure reliability. For dental implants, the load area and sliding contact conditions were considered, and for total knee replacements, the friction coefficient, medial-lateral displacement, valgus-varus rotation, and elastic modulus were considered. By comparing the simulation results and mechanical tests, boundary conditions with an error rate of less than 1.5% were selected. When a jig (gripper and collector) was applied with the same boundary conditions, an error rate of 48~22% occurred; otherwise, it was confirmed that the error rate was within 10~0.2%. The FE model was verified with an error of 2.49 to 3% compared to the mechanical test. The friction coefficient variable had the greatest influence on the results, accounting for 10 to 13%, and it was confirmed that valgus-varus rotation had a greater influence on the results than medial-lateral displacement. Relatively, the elastic modulus of the insert had the least effect on the results. These research results are expected to make CM&S techniques useful as a medical device digital development tool (M3DT) in the development of total knee replacements and dental implants.

6.
Bioengineering (Basel) ; 10(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136004

RESUMO

Poly(glycerol sebacate) is a biocompatible elastomer that has gained increasing attention as a potential biomaterial for tissue engineering applications. In particular, PGS is capable of providing shape memory effects and allows for a free form, which can remember the original shape and obtain a temporary shape under melting point and then can recover its original shape at body temperature. Because these properties can easily produce customized shapes, PGS is being coupled with implants to offer improved fixation and maintenance of implants for fractures of osteoporosis bone. Herein, this study fabricated the OP implant with a PGS membrane and investigated the potential of this coupling. Material properties were characterized and compared with various PGS membranes to assess features such as control of curing temperature, curing time, and washing time. Based on the ISO 10993-5 standard, in vitro cell culture studies with C2C12 cells confirmed that the OP implant coupled with PGS membrane showed biocompatibility and biomechanical experiments indicated significantly increased pullout strength and maintenance. It is believed that this multifunctional OP implant will be useful for bone tissue engineering applications.

7.
Polymers (Basel) ; 15(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37514445

RESUMO

The applicability of a polyether ether ketone locking compression plate (PEEK LCP) fabricated using FDM (fused deposition modeling)-based 3D printing to treat actual patients was studied. Three different tests-bending, axial compression, and axial torsion-were conducted on tibial non-osteoporotic comminuted diaphyseal fracture samples fixed with the commercial titanium alloy LCP and 3D-printed PEEK LCP. Comparing the outcomes of these tests revealed that the commercial titanium alloy LCP underwent plastic deformation in the bending and axial torsion tests, though the LCP did not fail even when an external force greater than the maximum allowable load of the tibia fixture of the LCP was applied. Elastic deformation occurred in the 3D-printed PEEK LCP in the bending and axial torsion tests. However, deformation occurred even under a small external force, and its stiffness was 10% compared to commercial titanium alloy LCP. Thus, 3D-printed PEEK LCP can be applied to the fracture conditions in non-weight-bearing regions. The experimental results reveal detailed insights into the treatment of actual patients by considering the stiffness and high toughness of 3D-printed PEEK LCP.

8.
Clin Orthop Surg ; 15(3): 436-443, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274506

RESUMO

Background: Spinopelvic fixation (SPF) has been a challenge for surgeons despite the advancements in instruments and surgical techniques. C-arm fluoroscopy-guided SPF is a widely used safe technique that utilizes the tear drop view. The tear drop view is an image of the corridor from the posterior superior iliac spine to the anterior inferior iliac spine (AIIS) of the pelvis. This study aimed to define the safe optimal tear drop view using three-dimensional reconstruction of computed tomography images. Methods: Three-dimensional reconstructions of the pelvises of 20 individuals were carried out. By rotating the reconstructed model, we simulated SPF with a cylinder representing imaginary screw. The safe optimal tear drop view was defined as the one embracing a corridor with the largest diameter with the inferior tear drop line not below the acetabular line and the lateral tear drop line medial to the AIIS. The distance between the lateral border of the tear drop and AIIS was defined as tear drop index (TDI) to estimate the degree of rotation on the plane image. Tear drop ratio (TDR), the ratio of the distance between the tear drop center and the AIIS to TDI, was also devised for more intuitive application of our simulation in a real operation. Results: All the maximum diameters and lengths were greater than 9 mm and 80 mm, respectively, which are the values of generally used screws for SPF at a TDI of 5 mm and 10 mm in both sexes. The TDRs were 3.40 ± 0.41 and 3.35 ± 0.26 in men and women, respectively, at a TDI of 5 mm. The TDRs were 2.26 ± 0.17 and 2.14 ± 0.12 in men and women, respectively, at a TDI of 10 mm. Conclusions: The safe optimal tear drop view can be obtained with a TDR of 2.5 to 3 by rounding off the measured values for intuitive application in the actual surgical field.


Assuntos
Imageamento Tridimensional , Pelve , Masculino , Humanos , Feminino , Imageamento Tridimensional/métodos , Pelve/diagnóstico por imagem , Pelve/cirurgia , Ílio/diagnóstico por imagem , Ílio/cirurgia , Tomografia Computadorizada por Raios X/métodos , Fluoroscopia
9.
Dent Mater ; 38(10): 1648-1660, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36075761

RESUMO

BACKGROUND: The purpose of this study was to establish a mechanical and histological basis for the development of biocompatible maxillofacial reconstruction implants by combining 3D-printed porous titanium structures and surface treatment. Improved osseointegration of 3D-printed titanium implants for reconstruction of maxillofacial segmental bone defect could be advantageous in not only quick osseointegration into the bone tissue but also in stabilizing the reconstruction. METHODS: Various macro-mesh titanium scaffolds were fabricated by 3D-printing. Human mesenchymal stem cells were used for cell attachment and proliferation assays. Osteogenic differentiation was confirmed by quantitative polymerase chain reaction analysis. The osseointegration rate was measured using micro computed tomography imaging and histological analysis. RESULTS: In three dimensional-printed scaffold, globular microparticle shape was observed regardless of structure or surface modification. Cell attachment and proliferation rates increased according to the internal mesh structure and surface modification. However, osteogenic differentiation in vitro and osseointegration in vivo revealed that non-mesh structure/non-surface modified scaffolds showed the most appropriate treatment effect. CONCLUSION: 3D-printed solid structure is the most suitable option for maxillofacial reconstruction. Various mesh structures reduced osteogenesis of the mesenchymal stem cells and osseointegration compared with that by the solid structure. Surface modification by microarc oxidation induced cell proliferation and increased the expression of some osteogenic genes partially; however, most of the markers revealed that the non-anodized solid scaffold was the most suitable for maxillofacial reconstruction.


Assuntos
Implantes Dentários , Osseointegração , Humanos , Osteogênese , Impressão Tridimensional , Propriedades de Superfície , Titânio/química , Microtomografia por Raio-X
10.
BMC Musculoskelet Disord ; 22(1): 767, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496801

RESUMO

OBJECTIVE: When a hip screw needs to be changed, choosing between the conventional (C-type) and helical blade (H-type) types is difficult. In this biomechanical study, we compared these two screw types relative to the type of the initial screw used. METHODS: C- or H-type screws were inserted (leading screw) in three types of polyurethane bone models (Sawbone, Pacific Research Laboratories, Inc., Washington, USA: 130 × 180 × 40 mm) of different bone mineral densities (pounds per cubic feet [PCF] 5, 80 kg/m3; PCF 10, 160 kg/m3; and PCF 15, 240 kg/m3), and then successively or alternately inserted (following screw) after the leading screw removal. An original model (original C and H) of a leading screw without removal was created as a control. The strengths of resistance to pullout (PO) and rotational stress were measured. For each experimental condition, there were 30 experimental models. RESULTS: The original C screw was superior in PO strength, and the original H-type screw was superior in rotational strength. When the C- or H-type screw was the leading screw, using the C-type screw again as the following screw (C1-C2, H1-C2) showed the greatest resistance to PO, and using the H-type screw as the following screw (C1-H2, H1-H2) showed superior resistance to rotational strength. However, the rotational strength of the C2 screw decreased by more than 50% compared with that of the original C screw. Moreover, the PO and rotational strengths of the H2 screw decreased to less than 30% overall compared with those of the original H screw. CONCLUSION: The H-type screw should be used for second-time screw insertion procedures in cases where it is difficult to choose between PO and rotational strengths.


Assuntos
Parafusos Ósseos , Cabeça do Fêmur , Fenômenos Biomecânicos , Densidade Óssea , Fêmur , Humanos
11.
J Orthop Res ; 39(12): 2671-2680, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580542

RESUMO

Although autogenous bone grafts are an optimal filling material for the induced membrane technique, limited availability and complications at the harvest site have created a need for alternative graft materials. We aimed to investigate the effect of an rhBMP-2-coated, 3D-printed, macro/microporous CaO-SiO2 -P2 O5 -B2 O3 bioactive ceramic scaffold in the treatment of critical femoral bone defects in rabbits using the induced membrane technique. A 15-mm segmental bone defect was made in the metadiaphyseal area of the distal femur of 14 rabbits. The defect was filled with polymethylmethacrylate cement and stabilized with a 2.0 mm locking plate. After the membrane matured for 4 weeks, the scaffold was implanted in two randomized groups: Group A (3D-printed bioceramic scaffold) and Group B (3D-printed, bioceramic scaffold with rhBMP-2). Eight weeks after implantation, the radiographic assessment showed that the healing rate of the defect was significantly higher in Group B (7/7, 100%) than in Group A (2/7, 29%). The mean volume of new bone formation around and inside the scaffold doubled in Group B compared to that in Group A. The mean static and dynamic stiffness were significantly higher in Group B. Histological examination revealed newly formed bone in both groups. Extensive cortical bone formation along the scaffold was found in Group B. Successful bone reconstruction in critical-sized bone defects could be obtained using rhBMP-2-coated, 3D-printed, macro/microporous bioactive ceramic scaffolds. This grafting material demonstrated potential as an alternative graft material in the induced membrane technique for reconstructing critical-sized bone defects.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Animais , Coelhos , Proteína Morfogenética Óssea 2 , Cerâmica/uso terapêutico , Fêmur/cirurgia , Impressão Tridimensional , Dióxido de Silício/farmacologia , Microtomografia por Raio-X
12.
Materials (Basel) ; 14(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435457

RESUMO

Lately, in orthodontic treatments, the use of transparent aligners for the correction of malocclusions has become prominent owing to their intrinsic advantages such as esthetics, comfort, and minimal maintenance. Attempts at improving upon this technology by varying various parameters to investigate the effects on treatments have been carried out by several researchers. Here, we aimed to investigate the biomechanical and clinical effects of aligner thickness on stress distributions in the periodontal ligament and changes in the tooth's center of rotation. Dental finite element models comprising the cortical and cancellous bones, gingiva, teeth, and nonlinear viscoelastic periodontal ligaments were constructed, validated, and used together with aligner finite element models of different aligner thicknesses to achieve the goal of this study. The finite element analyses were conducted to simulate the actual orthodontic aligner treatment process for the correction of malocclusions by generating pre-stresses in the aligner and allowing the aligner stresses to relax to induce tooth movement. The results of the analyses showed that orthodontic treatment in lingual inclination and axial rotation with a 0.75 mm-thick aligner resulted in 6% and 0.03% higher principal stresses in the periodontal ligament than the same treatment using a 0.05 mm-thick aligner, respectively. Again, for both aligner thicknesses, the tooth's center of rotation moved lingually and towards the root direction in lingual inclination, and diagonally from the long axis of the tooth in axial rotation. Taken together, orthodontic treatment for simple malocclusions using transparent aligners of different thicknesses will produce a similar effect on the principal stresses in the periodontal ligament and similar changes in the tooth's center of rotation, as well as sufficient tooth movement. These findings provide orthodontists and researchers clinical and biomechanical evidence about the effect of transparent aligner thickness selection and its effect on orthodontic treatment.

13.
Colloids Surf B Biointerfaces ; 199: 111528, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33385823

RESUMO

Three-dimensional (3D) bioprinting is a free-form fabrication technique enabling fine feature control for tissue engineering applications. Especially, 3D scaffolds capable of supporting cell attachment, proliferation, and osteogenic differentiation are a prerequisite for bone tissue regeneration. Herein, we elaborated this approach to produce a 3D polycaprolactone (PCL) scaffold with long-term osteogenic activity. Specifically, we coated polydopamine (PDA) on 3D PCL scaffolds, subsequently deposited hydroxyapatite (HA) nanoparticles via biomimetic mineralization, and finally immobilized bone morphogenetic protein-2 (BMP-2). Material properties were characterized and compared with various 3D scaffolds, including PCL, PDA-coated PCL (PCL/PDA), and PDA-coated and HA-deposited PCL (PCL/PDA/HA). In vitro cell culture studies with osteoblasts revealed that the PCL/PDA/HA scaffolds immobilized with BMP-2 showed long-term retention of BMP-2 (for up to 21 days) and significantly increased osteoblast proliferation and osteogenic differentiation, as evidenced by metabolic activity, alkaline phosphatase activity, and calcium deposition. We believe that this multifunctional osteogenic 3D scaffold will be useful for bone tissue engineering applications.


Assuntos
Biomineralização , Osteogênese , Osso e Ossos , Diferenciação Celular , Indóis , Poliésteres , Polímeros , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
15.
Materials (Basel) ; 13(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230822

RESUMO

Mechanical testing based on ISO 14801 standard is generally used to evaluate the performance of the dental implant system according to material and design changes. However, the test method is difficult to reflect on the clinical environment because the ISO 14801 standard does not take into account the various loads from different directions during chewing motion. In addition, the fracture pattern of the implant system can occur both in the horizontal and the vertical directions. Therefore, the purpose of this study was to compare fatigue characteristics and fracture patterns between single directional loading conditions based on the ISO 14801 standard and multi-directional loading condition. Firstly, the static test was performed on five specimens to derive the fatigue load, and the fatigue load was chosen as 40% of the maximum load measured in the static test. Subsequently, the fatigue test was performed considering the single axial/occlusal (AO), AO with facial/lingual (AOFL) and AO with mesial/distal (AOMD) directions, and five specimens were used for each fatigue loading modes. In order to analyze the fatigue characteristics, the fatigue cycle at the time of specimen fracture and displacement change of the specimen every 500 cycles were measured. Field emission scanning electron microscopy (FE-SEM) was used to analyze the fracture patterns and the fracture surface. Compared to the AO group, the fatigue cycle of the AOFL and AOMD groups showed lower about five times, while the displacement gradually increased with every 500 cycles. From FE-SEM results, there were no different surface morphology characteristics among three groups. However, the AOMD group showed a vertical slip band. Therefore, our results suggest that the multi-directional loading mode under the worst-case environment can reproduce the vertical fracture pattern in the clinical situation and may be essential to reflect on the dental implant design including connection types and surface treatments.

16.
Appl Bionics Biomech ; 2016: 4987831, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597807

RESUMO

Introduction. To compare the biomechanical stability of the femur following the removal of proximal femoral nail antirotation (PFNA-II) and dynamic hip screw (DHS). Material and Methods. 56 paired cadaveric femurs were used as experimental and control groups. In the experimental group, PFNA-II and DHS were randomly inserted into femurs on both sides and then removed. Thereafter, compression load was applied until fracture occurred; biomechanical stability of the femurs and associated fracture patterns were studied. Results. The ultimate load and stiffness of the control group were 6227.8 ± 1694.1 N and 990.5 ± 99.8 N/mm, respectively. These were significantly higher than experimental group (p = 0.014, <0.001) following the removal of PFNA-II (4085.6 ± 1628.03 N and 656.3 ± 155.3 N/mm) and DHS (4001.9 ± 1588.3 N and 656.3 ± 155.3 N/mm). No statistical differences in these values were found between the 2 device groups (p = 0.84, 0.71), regardless of age groups. However, fracture patterns were different between two devices, intertrochanteric and subtrochanteric fractures. Conclusions. Mechanical stability of the proximal femurs does not differ after the removal of 2 different of fixation devices regardless of the age. However, it was significantly lower compared to an intact femur. Different fracture patterns have been shown following the removal of different fixation devices as there are variations in the site of stress risers for individual implants.

17.
J Nanobiotechnology ; 13: 21, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25886153

RESUMO

BACKGROUND: Electrospinning is a simple and effective method for fabricating micro- and nanofiber matrices. Electrospun fibre matrices have numerous advantages for use as tissue engineering scaffolds, such as high surface area-to-volume ratio, mass production capability and structural similarity to the natural extracellular matrix (ECM). Therefore, electrospun matrices, which are composed of biocompatible polymers and various biomaterials, have been developed as biomimetic scaffolds for the tissue engineering applications. In particular, graphene oxide (GO) has recently been considered as a novel biomaterial for skeletal muscle regeneration because it can promote the growth and differentiation of myoblasts. Therefore, the aim of the present study was to fabricate the hybrid fibre matrices that stimulate myoblasts differentiation for skeletal muscle regeneration. RESULTS: Hybrid fibre matrices composed of poly(lactic-co-glycolic acid, PLGA) and collagen (Col) impregnated with GO (GO-PLGA-Col) were successfully fabricated using an electrospinning process. Our results indicated that the GO-PLGA-Col hybrid matrices were comprised of randomly-oriented continuous fibres with a three-dimensional non-woven porous structure. Compositional analysis showed that GO was dispersed uniformly throughout the GO-PLGA-Col matrices. In addition, the hydrophilicity of the fabricated matrices was significantly increased by blending with a small amount of Col and GO. The attachment and proliferation of the C2C12 skeletal myoblasts were significantly enhanced on the GO-PLGA-Col hybrid matrices. Furthermore, the GO-PLGA-Col matrices stimulated the myogenic differentiation of C2C12 skeletal myoblasts, which was enhanced further under the culture conditions of the differentiation media. CONCLUSIONS: Taking our findings into consideration, it is suggested that the GO-PLGA-Col hybrid fibre matrices can be exploited as potential biomimetic scaffolds for skeletal tissue engineering and regeneration because these GO-impregnated hybrid matrices have potent effects on the induction of spontaneous myogenesis and exhibit superior bioactivity and biocompatibility.


Assuntos
Materiais Biomiméticos/química , Colágeno/química , Grafite/química , Ácido Láctico/química , Mioblastos/citologia , Ácido Poliglicólico/química , Animais , Adesão Celular , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Matriz Extracelular/química , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Músculo Esquelético/citologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Alicerces Teciduais , Difração de Raios X
18.
Knee Surg Relat Res ; 26(3): 155-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25229045

RESUMO

PURPOSE: The purpose of this study was to evaluate the biomechanical properties of a new anatomical locking metal block plate by comparing the initial biomechanical stability of three different fixation constructs for open wedge high tibial osteotomy (HTO). MATERIALS AND METHODS: Sawbones composite tibiae were used to make a 10-mm opening osteotomy model with uniplane technique. The osteotomy was secured with three different types of plates: Group I, new osteotomy plate without a metal block (n=5); Group II, new osteotomy plate with a 10-mm metal block (n=5); and Group III, two short metal block plates (n=5). Single load to failure test and staircase load-controlled cyclical failure test were performed. In the single load to failure test, the yield load, maximum failure load, and the displacement of the osteotomy gap were measured. In the staircase cyclical load to failure test, the total number of cycles to failure was recorded. Failure modes were observed during both single and cyclic load tests. RESULTS: Group II showed the highest yield and ultimate loads (1829±319 N, 3493±1250 N) compared to Group I (1512±157 N, 2422±769 N) and Group III (1369±378 N, 2157±210 N, p<0.05). The displacement of the opening gap in Group II (0.34±0.35 mm) was significantly lesser than the other groups (p<0.05). In the staircase cyclical load to failure test, the total number of cycles to failure was 12,860 at 950 N in Group III, 20,280 at 1,140 N in Group I, and 42,816 at 1,330 N in Group II (p<0.05). All the specimens showed complete fracture of the intact lateral sawbones area and slight displacement of the distal fragment of the specimens in the single load to test. None of the specimens showed deformed or broken screws and plates during the single load to test. During the fatigue test with staircase cyclic loading, no fracture of the lateral sawbones area was observed. CONCLUSIONS: This study demonstrated that the new anatomical locking metal block plate could provide sufficient primary stability for open wedge HTO. The addition of a metal block to this new plate can increase the stability of the osteotomy compared to the one without a metal block.

19.
Biotechnol Appl Biochem ; 60(6): 580-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23772797

RESUMO

This study concentrates on the potential application of conjugated polyelectrolytes (CPEs) to cell imaging and DNA delivery. Four different types of polyfluorene copolymers, namely, PAHFP-Br, PAEFP-Br, PAHFbT-Br, and PSBFP-Na, which have the same π-conjugated backbone but different side chains, were synthesized. For cytotoxicity testing, L-929 fibroblastic cells were treated with increasing concentrations (0-50 µM) of each CPE and then cell viability was determined by WST-8 assay. Cellular uptake of CPEs into cultured L-929 cells was observed by fluorescence microscopy. To examine DNA delivery by CPEs, the cells were incubated for 1 H with PAHFP-Br/fluorescein (Fl)-labeled single-stranded DNA (ssDNA-Fl) complex and then visualized by fluorescence microscopy. Cytotoxicity of CPEs was increased in a dose-dependent manner but at lower than 10 µM, PAHFP-Br, PAEFP-Br, and PSBFP-Na did not show any cytotoxic effects on the cells. When added to cell cultures at 1 µM, PAHFP-Br/ssDNA-Fl complex was delivered and then dissociated into PAHFP-Br and ssDNA-Fl within the cells. This result implies that PAHFP-Br can enable cell imaging and DNA delivery into fibroblastic cells. Therefore, it is suggested that PAHFP-Br with various advantages such as low cytotoxicity and high fluorescence efficiency can be extensively used as a potential agent for cell imaging and gene delivery.


Assuntos
DNA/química , DNA/metabolismo , Portadores de Fármacos/química , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Transferência de Genes , Imagem Molecular/métodos , Polímeros/química , Animais , Transporte Biológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA/genética , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Fluorenos/química , Camundongos , Fenômenos Ópticos , Polímeros/metabolismo , Polímeros/toxicidade
20.
Clin Biomech (Bristol, Avon) ; 28(2): 232-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23261017

RESUMO

BACKGROUND: Although many types of external fixators have been developed for distraction osteogenesis, all have some drawbacks. We recently developed a novel bone lengthening plate to overcome these problems. The purpose of this study is to conduct biomechanical analyses using cadavers to assess the stability of the bone lengthening plate in relation to distraction length and femoral bone mineral density. METHODS: We used human cadaveric femurs (n=18) to assess the effects of distraction length and bone mineral density on the biomechanical stability of the bone lengthening plate. After establishing control (n=6, 0mm lengthening) and experimental groups (n=12, 30 mm lengthening), we measured biomechanical stability (structural stiffness, ultimate load, and displacement) under a compressive load. The experimental group was subdivided into a group with normal bone mineral density (n=6) and a group with osteoporosis (n=6), and the biomechanical stability of these groups was compared. FINDING: Structural stiffness differed significantly between the control (417.6 N/mm) and combined experimental groups (185.6 N/mm, p=0.002). Ultimate load also differed significantly between the control (1327.8 N) and combined experimental (331.4 N, p=0.002) groups. Bone mineral density was unrelated to structural stiffness (p=0.204), ultimate load (0.876), or displacement (0.344). In all cases, failure of the bone lengthening plate occurred at the longitudinal connectors, such as the connecting columns between the upper and lower plates, and the lengthening shaft of the bone lengthening plate. INTERPRETATION: The biomechanical stability of the bone lengthening plate was affected by the lengthening length but not by bone mineral density. In addition, biomechanical stability during lengthening was most strongly influenced by the longitudinal connectors.


Assuntos
Placas Ósseas , Fêmur/cirurgia , Osteogênese por Distração/instrumentação , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Parafusos Ósseos , Cadáver , Fixadores Externos , Feminino , Humanos , Fixadores Internos , Masculino , Pessoa de Meia-Idade , Osteogênese por Distração/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...