Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 16(4): 679-691, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35881597

RESUMO

This paper presents a PVT-robust error-feedback (EF) noise-shaping SAR (NS-SAR) ADC for direct neural-signal recording. For closed-loop bidirectional neural interfaces enabling the next generation neurological devices, a wide-dynamic-range neural recording circuit is required to accommodate stimulation artifacts. A recording structure using an NS-SAR ADC can be a good candidate because the high resolution and wide dynamic range can be obtained with a low oversampling ratio and power consumption. However, NS-SAR ADCs require an additional gain stage to obtain a well-shaped noise transfer function (NTF), and a dynamic amplifier is often used as the gain stage to minimize power overhead at the cost of vulnerability to PVT variations. To overcome this limitation, the proposed work reutilizes the capacitive-feedback amplifier, which is the analog front-end of the neural recording circuit, as a PVT-robust gain stage to achieve a reliable NS performance. In addition, a new chopper-based implementation of a passive high-pass IIR filter is proposed, achieving an improved NTF compared to prior EF NS-SAR ADCs. Fabricated in a 180-nm CMOS process, the proposed NS-SAR ADC consumes 4.3-µW power and achieves a signal-to-noise-and-distortion ratio (SNDR) of 71.7 dB and 82.7 dB for a bandwidth of 5 kHz and 300 Hz, resulting in a Schreier figure of merit (FOM) of 162.4 dB and 162.1 dB, respectively. Direct neural recording using the proposed NS-SAR ADC is demonstrated successfully in vivo, and also its tolerance against stimulation artifacts is validated in vitro.


Assuntos
Amplificadores Eletrônicos , Desenho de Equipamento , Retroalimentação
2.
Sensors (Basel) ; 20(7)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235311

RESUMO

This paper presents a reconfigurable time-to-digital converter (TDC) used to quantize the phase of the impedance in electrical impedance spectroscopy (EIS). The TDC in the EIS system must handle a wide input-time range for analysis in the low-frequency range and have a high resolution for analysis in the high-frequency range. The proposed TDC adopts a coarse counter to support a wide input-time range and cascaded time interpolators to improve the time resolution in the high-frequency analysis without increasing the counting clock speed. When the same large interpolation factor is adopted, the cascaded time interpolators have shorter measurement time and smaller chip area than a single-stage time interpolator. A reconfigurable time interpolation factor is adopted to maintain the phase resolution with reasonable measurement time. The fabricated TDC has a peak-to-peak phase error of less than 0.72° over the input frequency range from 1 kHz to 512 kHz and the phase error of less than 2.70° when the range is extended to 2.048 MHz, which demonstrates a competitive performance when compared with previously reported designs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA