Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 40(19-20): 2063-2072, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37294204

RESUMO

A decline in intellectual functioning (intelligence quotient [IQ]) is often observed following more severe forms of traumatic brain injury (TBI) and is a useful index for long-term outcome. Identifying brain correlates of IQ can serve to inform developmental trajectories of behavior in this population. Using magnetic resonance imaging (MRI), we examined the relationship between intellectual abilities and patterns of cortical thickness in children with a history of TBI or with orthopedic injury (OI) in the chronic phase of injury recovery. Participants were 47 children with OI and 58 children with TBI, with TBI severity ranging from complicated-mild to severe. Ages ranged from 8 to 14 years old, with an average age of 10.47 years, and an injury-to-test range of ∼1-5 years. The groups did not differ in age or sex. The intellectual ability estimate (full-scale [FS]IQ-2) was derived from a two-form (Vocabulary and Matrix Reasoning subtests) Wechsler Abbreviated Scale of Intelligence (WASI). MRI data were processed using the FreeSurfer toolkit and harmonized across data collection sites using neuroComBat procedures, while holding demographic features (i.e., sex, socioeconomic status [SES]), TBI status, and FSIQ-2 constant. Separate general linear models per group (TBI and OI) and a single interaction model with all participants were conducted with all significant results withstanding correction for multiple comparisons via permutation testing. Intellectual ability was higher (p < 0.001) in the OI group (FSIQ-2 = 110.81) than in the TBI group (FSIQ-2 = 99.81). In children with OI, bi-hemispheric regions, including the right pre-central gyrus and precuneus and bilateral inferior temporal and left occipital areas were related to IQ, such that higher IQ was associated with thicker cortex in these regions. In contrast, only cortical thickness in the right pre-central gyrus and bilateral cuneus positively related to IQ in children with TBI. Significant interaction effects were found in the bilateral temporal, parietal, and occipital lobes and left frontal regions, indicating that the relationship between IQ and cortical thickness differed between groups in these regions. Changes in cortical associations with IQ after TBI may reflect direct injury effects and/or adaptation in cortical structure and intellectual functioning, particularly in the bilateral posterior parietal and inferior temporal regions. This suggests that the substrates of intellectual ability are particularly susceptible to acquired injury in the integrative association cortex. Longitudinal work is needed to account for normal developmental changes and to investigate how cortical thickness and intellectual functioning and their association change over time following TBI. Improved understanding of how TBI-related cortical thickness alterations relate to cognitive outcome could lead to improved predictions of outcome following brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Criança , Lactente , Pré-Escolar , Adolescente , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Cognição , Lesões Encefálicas/complicações , Imageamento por Ressonância Magnética/métodos
2.
Neuroimage Clin ; 35: 103136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36002959

RESUMO

Childhood traumatic brain injury (TBI) is one of the most common causes of acquired disability and has significant implications for executive functions (EF), such as impaired attention, planning, and initiation that are predictive of everyday functioning. Evidence has suggested attentional features of executive functioning require behavioral flexibility that is dependent on frontostriatial circuitry. The purpose of this study was to evaluate surface-based deformation of a specific frontostriatial circuit in pediatric TBI and its role in EF. Regions of interest included: the dorsolateral prefrontal cortex (DLPFC), caudate nucleus, globus pallidus, and the mediodorsal nucleus of the thalamus (MD). T1-weighted magnetic resonance images were obtained in a sample of children ages 8-13 with complicated mild, moderate, or severe TBI (n = 32) and a group of comparison children with orthopedic injury (OI; n = 30). Brain regions were characterized using high-dimensional surface-based brain mapping procedures. Aspects of EF were assessed using select subtests from the Test of Everyday Attention for Children (TEA-Ch). General linear models tested group and hemisphere differences in DLPFC cortical thickness and subcortical shape of deep-brain regions; Pearson correlations tested relationships with EF. Main effects for group were found in both cortical thickness of the DLPFC (F1,60 = 4.30, p = 0.042) and MD mean deformation (F1,60 = 6.50, p = 0.01) all with lower values in the TBI group. Statistical surface maps revealed significant inward deformation on ventral-medial aspects of the caudate in TBI relative to OI, but null results in the globus pallidus. No significant relationships between EF and any region of interest were observed. Overall, findings revealed abnormalities in multiple aspects of a frontostriatial circuit in pediatric TBI, which may reflect broader pathophysiological mechanisms. Increased consideration for the role of deep-brain structures in pediatric TBI can aid in the clinical characterization of anticipated long-term developmental effects of these individuals.


Assuntos
Lesões Encefálicas Traumáticas , Adolescente , Atenção , Lesões Encefálicas Traumáticas/complicações , Criança , Cognição , Função Executiva/fisiologia , Humanos , Testes Neuropsicológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...