Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(8): e2207301, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36748276

RESUMO

In the development of orally inhaled drug products preclinical animal models regularly fail to predict pharmacological as well as toxicological responses in humans. Models based on human cells and tissues are potential alternatives to animal experimentation allowing for the isolation of essential processes of human biology and making them accessible in vitro. Here, the generation of a novel monoclonal cell line "Arlo," derived from the polyclonal human alveolar epithelium lentivirus immortalized cell line hAELVi via single-cell printing, and its characterization as a model for the human alveolar epithelium as well as a building block for future complex in vitro models is described. "Arlo" is systematically compared in vitro to primary human alveolar epithelial cells (hAEpCs) as well as to the polyclonal hAELVi cell line. "Arlo" cells show enhanced barrier properties with high transepithelial electrical resistance (TEER) of ≈3000 Ω cm2 and a potential difference (PD) of ≈30 mV under air-liquid interface (ALI) conditions, that can be modulated. The cells grow in a polarized monolayer and express genes relevant to barrier integrity as well as homeostasis as is observed in hAEpCs. Successful productive infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a proof-of-principle study offers an additional, attractive application of "Arlo" beyond biopharmaceutical experimentation.


Assuntos
Células Epiteliais Alveolares , COVID-19 , Animais , Humanos , SARS-CoV-2 , COVID-19/metabolismo , Linhagem Celular , Permeabilidade
2.
Glia ; 69(9): 2160-2177, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34028094

RESUMO

Astrocytes from the cerebral cortex (CTX) and cerebellum (CB) share basic molecular programs, but also form distinct spatial and functional subtypes. The regulatory epigenetic layers controlling such regional diversity have not been comprehensively investigated so far. Here, we present an integrated epigenome analysis of methylomes, open chromatin, and transcriptomes of astroglia populations isolated from the cortex or cerebellum of young adult mice. Besides a basic overall similarity in their epigenomic programs, cortical astrocytes and cerebellar astrocytes exhibit substantial differences in their overall open chromatin structure and in gene-specific DNA methylation. Regional epigenetic differences are linked to differences in transcriptional programs encompassing genes of region-specific transcription factor networks centered around Lhx2/Foxg1 in CTX astrocytes and the Zic/Irx families in CB astrocytes. The distinct epigenetic signatures around these transcription factor networks point to a complex interconnected and combinatorial regulation of region-specific transcriptomes. These findings suggest that key transcription factors, previously linked to temporal, regional, and spatial control of neurogenesis, also form combinatorial networks important for astrocytes. Our study provides a valuable resource for the molecular basis of regional astrocyte identity and physiology.


Assuntos
Astrócitos , Epigenômica , Animais , Astrócitos/metabolismo , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Epigênese Genética/genética , Fatores de Transcrição Forkhead/genética , Camundongos , Proteínas do Tecido Nervoso/metabolismo
3.
Genome Med ; 12(1): 94, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33121525

RESUMO

BACKGROUND: High-grade serous ovarian cancer (HGSOC) is a major unmet need in oncology. The remaining uncertainty on its originating tissue has hampered the discovery of molecular oncogenic pathways and the development of effective therapies. METHODS: We used an approach based on the retention in tumors of a DNA methylation trace (OriPrint) that distinguishes the two putative tissues of origin of HGSOC, the fimbrial (FI) and ovarian surface epithelia (OSE), to stratify HGSOC by several clustering methods, both linear and non-linear. The identified tumor subtypes (FI-like and OSE-like HGSOC) were investigated at the RNAseq level to stratify an in-house cohort of macrodissected HGSOC FFPE samples to derive overall and disease-free survival and identify specific transcriptional alterations of the two tumor subtypes, both by classical differential expression and weighted correlation network analysis. We translated our strategy to published datasets and verified the co-occurrence of previously described molecular classification of HGSOC. We performed cytokine analysis coupled to immune phenotyping to verify alterations in the immune compartment associated with HGSOC. We identified genes that are both differentially expressed and methylated in the two tumor subtypes, concentrating on PAX8 as a bona fide marker of FI-like HGSOC. RESULTS: We show that: - OriPrint is a robust DNA methylation tracer that exposes the tissue of origin of HGSOC. - The tissue of origin of HGSOC is the main determinant of DNA methylation variance in HGSOC. - The tissue of origin is a prognostic factor for HGSOC patients. - FI-like and OSE-like HGSOC are endowed with specific transcriptional alterations that impact patients' prognosis. - OSE-like tumors present a more invasive and immunomodulatory phenotype, compatible with its worse prognostic impact. - Among genes that are differentially expressed and regulated in FI-like and OSE-like HGSOC, PAX8 is a bona fide marker of FI-like tumors. CONCLUSIONS: Through an integrated approach, our work demonstrates that both FI and OSE are possible origins for human HGSOC, whose derived subtypes are both molecularly and clinically distinct. These results will help define a new roadmap towards rational, subtype-specific therapeutic inroads and improved patients' care.


Assuntos
Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Epigênese Genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Imunomodulação , Gradação de Tumores , Fenótipo , Prognóstico , Estudos Retrospectivos , Transcriptoma
4.
Front Immunol ; 11: 628923, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643306

RESUMO

The functions of bone marrow plasma cells (BMPC) beyond antibody production are not fully elucidated and distinct subsets of BMPC suggest potential different functions. Phenotypic differences were identified for human BMPC depending on CD19 expression. Since CD19 is a co-stimulatory molecule of the B-cell-receptor (BCR), and IgA+ and IgM+ BMPC express the BCR on their surface, we here studied whether CD19 expression affects cellular responses, such as BCR signaling and the expression of checkpoint molecules. We analyzed 132 BM samples from individuals undergoing routine total hip arthroplasty. We found that both CD19+ and CD19- BMPC expressed BCR signaling molecules. Notably, the BCR-associated kinase spleen tyrosine kinase (SYK) including pSYK was higher expressed in CD19+ BMPC compared to CD19- BMPC. BCR stimulation also resulted in increased kinase phosphorylation downstream of the BCR while expression of CD19 remained stable afterwards. Interestingly, the BCR response was restricted to IgA+ BMPC independently of CD19 expression. With regard to the expression of checkpoint molecules, CD19- BMPC expressed higher levels of co-inhibitory molecule programmed cell death protein-1 (PD-1) than CD19+ BMPC. IgA+ BMPC characteristically upregulated PD-1 upon BCR stimulation in contrast to other PC subsets and inhibition of the kinase SYK abrogated PD-1 upregulation. In contrast, expression of PD-1 ligand, B and T lymphocyte attenuator (BTLA) and CD28 did not change upon BCR activation of IgA+ BMPC. Here, we identify a distinct characteristic of IgA+ BMPC that is independent of the phenotypic heterogeneity of the subsets according to their CD19 expression. The data suggest that IgA+ BMPC underlie different regulatory principles and/or exert distinct regulatory functions.


Assuntos
Células da Medula Óssea/imunologia , Imunoglobulina A/imunologia , Plasmócitos/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Regulação para Cima/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
Front Immunol ; 10: 2136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616406

RESUMO

Autoimmune diseases (AID) such as systemic lupus erythematosus (SLE), primary Sjögren's syndrome (pSS), and rheumatoid arthritis (RA) are chronic inflammatory diseases in which abnormalities of B cell function play a central role. Although it is widely accepted that autoimmune B cells are hyperactive in vivo, a full understanding of their functional status in AID has not been delineated. Here, we present a detailed analysis of the functional capabilities of AID B cells and dissect the mechanisms underlying altered B cell function. Upon BCR activation, decreased spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (Btk) phosphorylation was noted in AID memory B cells combined with constitutive co-localization of CD22 and protein tyrosine phosphatase (PTP) non-receptor type 6 (SHP-1) along with hyporesponsiveness to TLR9 signaling, a Syk-dependent response. Similar BCR hyporesponsiveness was also noted specifically in SLE CD27- B cells together with increased PTP activities and increased transcripts for PTPN2, PTPN11, PTPN22, PTPRC, and PTPRO in SLE B cells. Additional studies revealed that repetitive BCR stimulation of normal B cells can induce BCR hyporesponsiveness and that tissue-resident memory B cells from AID patients also exhibited decreased responsiveness immediately ex vivo, suggesting that the hyporesponsive status can be acquired by repeated exposure to autoantigen(s) in vivo. Functional studies to overcome B cell hyporesponsiveness revealed that CD40 co-stimulation increased BCR signaling, induced proliferation, and downregulated PTP expression (PTPN2, PTPN22, and receptor-type PTPs). The data support the conclusion that hyporesponsiveness of AID and especially SLE B cells results from chronic in vivo stimulation through the BCR without T cell help mediated by CD40-CD154 interaction and is manifested by decreased phosphorylation of BCR-related proximal signaling molecules and increased PTPs. The hyporesponsiveness of AID B cells is similar to a form of functional anergy.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Tirosina Quinase da Agamaglobulinemia/imunologia , Humanos , Proteínas Tirosina Fosfatases/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Quinase Syk/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...