Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1233553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719228

RESUMO

In recent years, various automated methods for plant phenotyping addressing roots or shoots have been developed and corresponding platforms have been established to meet the diverse requirements of plant research and breeding. However, most platforms are only either able to phenotype shoots or roots of plants but not both simultaneously. This substantially limits the opportunities offered by a joint assessment of the growth and development dynamics of both organ systems, which are highly interdependent. In order to overcome these limitations, a root phenotyping installation was integrated into an existing automated non-invasive high-throughput shoot phenotyping platform. Thus, the amended platform is now capable of conducting high-throughput phenotyping at the whole-plant level, and it was used to assess the vegetative root and shoot growth dynamics of five maize inbred lines and four hybrids thereof, as well as the responses of five inbred lines to progressive drought stress. The results showed that hybrid vigour (heterosis) occurred simultaneously in roots and shoots and was detectable as early as 4 days after transplanting (4 DAT; i.e., 8 days after seed imbibition) for estimated plant height (EPH), total root length (TRL), and total root volume (TRV). On the other hand, growth dynamics responses to progressive drought were different in roots and shoots. While TRV was significantly reduced 10 days after the onset of the water deficit treatment, the estimated shoot biovolume was significantly reduced about 6 days later, and EPH showed a significant decrease even 2 days later (8 days later than TRV) compared with the control treatment. In contrast to TRV, TRL initially increased in the water deficit period and decreased much later (not earlier than 16 days after the start of the water deficit treatment) compared with the well-watered plants. This may indicate an initial response of the plants to water deficit by forming longer but thinner roots before growth was inhibited by the overall water deficit. The magnitude and the dynamics of the responses were genotype-dependent, as well as under the influence of the water consumption, which was related to plant size.

2.
Nat Commun ; 14(1): 5783, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723146

RESUMO

In plant science, the suboptimal match of growing conditions hampers the transfer of knowledge from controlled environments in glasshouses or climate chambers to field environments. Here we present the PhenoSphere, a plant cultivation infrastructure designed to simulate field-like environments in a reproducible manner. To benchmark the PhenoSphere, the effects on plant growth of weather conditions of a single maize growing season and of an averaged season over three years are compared to those of a standard glasshouse and of four years of field trials. The single season simulation proves superior to the glasshouse and the averaged season in the PhenoSphere: The simulated weather regime of the single season triggers plant growth and development progression very similar to that observed in the field. Hence, the PhenoSphere enables detailed analyses of performance-related trait expression and causal biological mechanisms in plant populations exposed to weather conditions of current and anticipated future climate scenarios.


Assuntos
Clima , Tempo (Meteorologia) , Estações do Ano , Benchmarking , Desenvolvimento Vegetal
3.
J Exp Bot ; 74(12): 3630-3650, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37010230

RESUMO

EARLY FLOWERING 3 (ELF3) is an important regulator of various physiological and developmental processes and hence may serve to improve plant adaptation which will be essential for future plant breeding. To expand the limited knowledge on barley ELF3 in determining agronomic traits, we conducted field studies with heterogeneous inbred families (HIFs) derived from selected lines of the wild barley nested association mapping population HEB-25. During two growing seasons, phenotypes of nearly isogenic HIF sister lines, segregating for exotic and cultivated alleles at the ELF3 locus, were compared for 10 developmental and yield-related traits. We determine novel exotic ELF3 alleles and show that HIF lines, carrying the exotic ELF3 allele, accelerated plant development compared with the cultivated ELF3 allele, depending on the genetic background. Remarkably, the most extreme effects on phenology could be attributed to one exotic ELF3 allele differing from the cultivated Barke ELF3 allele in only one single nucleotide polymorphism (SNP). This SNP causes an amino acid substitution (W669G), which as predicted has an impact on the protein structure of ELF3. Consequently, it may affect phase separation behaviour and nano-compartment formation of ELF3 and, potentially, also its local cellular interactions causing significant trait differences between HIF sister lines.


Assuntos
Hordeum , Locos de Características Quantitativas , Mapeamento Cromossômico , Hordeum/genética , Alelos , Melhoramento Vegetal , Desenvolvimento Vegetal
4.
Planta ; 256(4): 68, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053378

RESUMO

MAIN CONCLUSION: The combination of image-based phenotyping with in-depth anatomical analysis allows for a thorough investigation of plant physiological plasticity in acclimation, which is driven by environmental conditions and mediated by anatomical traits. Understanding the ability of plants to respond to fluctuations in environmental conditions is critical to addressing climate change and unlocking the agricultural potential of crops both indoor and in the field. Recent studies have revealed that the degree of eco-physiological acclimation depends on leaf anatomical traits, which show stress-induced alterations during organogenesis. Indeed, it is still a matter of debate whether plant anatomy is the bottleneck for optimal plant physiology or vice versa. Here, we cultivated 'Salanova' lettuces in a phenotyping chamber under two different vapor pressure deficits (VPDs; low, high) and watering levels (well-watered, low-watered); then, plants underwent short-term changes in VPD. We aimed to combine high-throughput phenotyping with leaf anatomical analysis to evaluate their capability in detecting the early stress signals in lettuces and to highlight the different degrees of plants' eco-physiological acclimation to the change in VPD, as influenced by anatomical traits. The results demonstrate that well-watered plants under low VPD developed a morpho-anatomical structure in terms of mesophyll organization, stomatal and vein density, which more efficiently guided the acclimation to sudden changes in environmental conditions and which was not detected by image-based phenotyping alone. Therefore, we emphasized the need to complement high-throughput phenotyping with anatomical trait analysis to unveil crop acclimation mechanisms and predict possible physiological behaviors after sudden environmental fluctuations due to climate changes.


Assuntos
Aclimatação , Lactuca , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Pressão de Vapor , Água/fisiologia
5.
Plant J ; 111(2): 335-347, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35535481

RESUMO

The research data life cycle from project planning to data publishing is an integral part of current research. Until the last decade, researchers were responsible for all associated phases in addition to the actual research and were assisted only at certain points by IT or bioinformaticians. Starting with advances in sequencing, the automation of analytical methods in all life science fields, including in plant phenotyping, has led to ever-increasing amounts of ever more complex data. The tasks associated with these challenges now often exceed the expertise of and infrastructure available to scientists, leading to an increased risk of data loss over time. The IPK Gatersleben has one of the world's largest germplasm collections and two decades of experience in crop plant research data management. In this article we show how challenges in modern, data-driven research can be addressed by data stewards. Based on concrete use cases, data management processes and best practices from plant phenotyping, we describe which expertise and skills are required and how data stewards as an integral actor can enhance the quality of a necessary digital transformation in progressive research.


Assuntos
Big Data , Fenômica , Plantas , Produtos Agrícolas/genética , Plantas/genética
6.
Theor Appl Genet ; 135(1): 1-16, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34302493

RESUMO

Rising temperatures and changing precipitation patterns will affect agricultural production substantially, exposing crops to extended and more intense periods of stress. Therefore, breeding of varieties adapted to the constantly changing conditions is pivotal to enable a quantitatively and qualitatively adequate crop production despite the negative effects of climate change. As it is not yet possible to select for adaptation to future climate scenarios in the field, simulations of future conditions in controlled-environment (CE) phenotyping facilities contribute to the understanding of the plant response to special stress conditions and help breeders to select ideal genotypes which cope with future conditions. CE phenotyping facilities enable the collection of traits that are not easy to measure under field conditions and the assessment of a plant's phenotype under repeatable, clearly defined environmental conditions using automated, non-invasive, high-throughput methods. However, extrapolation and translation of results obtained under controlled environments to field environments is ambiguous. This review outlines the opportunities and challenges of phenotyping approaches under controlled environments complementary to conventional field trials. It gives an overview on general principles and introduces existing phenotyping facilities that take up the challenge of obtaining reliable and robust phenotypic data on climate response traits to support breeding of climate-adapted crops.


Assuntos
Mudança Climática , Ambiente Controlado , Fenótipo , Melhoramento Vegetal , Adaptação Fisiológica , Secas , Transpiração Vegetal , Estresse Salino
7.
Front Plant Sci ; 12: 732608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659298

RESUMO

Gene pairs resulting from whole genome duplication (WGD), so-called ohnologous genes, are retained if at least one member of the pair undergoes neo- or sub-functionalization. Phylogenetic analyses of the ohnologous genes ALBOSTRIANS (HvAST/HvCMF7) and ALBOSTRIANS-LIKE (HvASL/HvCMF3) of barley (Hordeum vulgare) revealed them as members of a subfamily of genes coding for CCT motif (CONSTANS, CONSTANS-LIKE and TIMING OF CAB1) proteins characterized by a single CCT domain and a putative N-terminal chloroplast transit peptide. Recently, we showed that HvCMF7 is needed for chloroplast ribosome biogenesis. Here we demonstrate that mutations in HvCMF3 lead to seedlings delayed in development. They exhibit a yellowish/light green - xantha - phenotype and successively develop pale green leaves. Compared to wild type, plastids of mutant seedlings show a decreased PSII efficiency, impaired processing and reduced amounts of ribosomal RNAs; they contain less thylakoids and grana with a higher number of more loosely stacked thylakoid membranes. Site-directed mutagenesis of HvCMF3 identified a previously unknown functional domain, which is highly conserved within this subfamily of CCT domain containing proteins. HvCMF3:GFP fusion constructs were localized to plastids and nucleus. Hvcmf3Hvcmf7 double mutants exhibited a xantha-albino or albino phenotype depending on the strength of molecular lesion of the HvCMF7 allele. The chloroplast ribosome deficiency is discussed as the primary observed defect of the Hvcmf3 mutants. Based on our observations, the genes HvCMF3 and HvCMF7 have similar but not identical functions in chloroplast development of barley supporting our hypothesis of neo-/sub-functionalization between both ohnologous genes.

8.
Sci Rep ; 11(1): 16047, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362967

RESUMO

High-throughput root phenotyping in the soil became an indispensable quantitative tool for the assessment of effects of climatic factors and molecular perturbation on plant root morphology, development and function. To efficiently analyse a large amount of structurally complex soil-root images advanced methods for automated image segmentation are required. Due to often unavoidable overlap between the intensity of fore- and background regions simple thresholding methods are, generally, not suitable for the segmentation of root regions. Higher-level cognitive models such as convolutional neural networks (CNN) provide capabilities for segmenting roots from heterogeneous and noisy background structures, however, they require a representative set of manually segmented (ground truth) images. Here, we present a GUI-based tool for fully automated quantitative analysis of root images using a pre-trained CNN model, which relies on an extension of the U-Net architecture. The developed CNN framework was designed to efficiently segment root structures of different size, shape and optical contrast using low budget hardware systems. The CNN model was trained on a set of 6465 masks derived from 182 manually segmented near-infrared (NIR) maize root images. Our experimental results show that the proposed approach achieves a Dice coefficient of 0.87 and outperforms existing tools (e.g., SegRoot) with Dice coefficient of 0.67 by application not only to NIR but also to other imaging modalities and plant species such as barley and arabidopsis soil-root images from LED-rhizotron and UV imaging systems, respectively. In summary, the developed software framework enables users to efficiently analyse soil-root images in an automated manner (i.e. without manual interaction with data and/or parameter tuning) providing quantitative plant scientists with a powerful analytical tool.

9.
Front Plant Sci ; 12: 681375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163512

RESUMO

The Arabidopsis gene Chloroplast Import Apparatus 2 (CIA2) encodes a transcription factor that positively affects the activity of nuclear genes for chloroplast ribosomal proteins and chloroplast protein import machineries. CIA2-like (CIL) is the paralogous gene of CIA2. We generated a cil mutant by site-directed mutagenesis and compared it with cia2 and cia2cil double mutant. Phenotype of the cil mutant did not differ from the wild type under our growth conditions, except faster growth and earlier time to flowering. Compared to cia2, the cia2cil mutant showed more impaired chloroplast functions and reduced amounts of plastid ribosomal RNAs. In silico analyses predict for CIA2 and CIL a C-terminal CCT domain and an N-terminal chloroplast transit peptide (cTP). Chloroplast (and potentially nuclear) localization was previously shown for HvCMF3 and HvCMF7, the homologs of CIA2 and CIL in barley. We observed nuclear localization of CIL after transient expression in Arabidopsis protoplasts. Surprisingly, transformation of cia2 with HvCMF3, HvCMF7, or with a truncated CIA2 lacking the predicted cTP could partially rescue the pale-green phenotype of cia2. These data are discussed with respect to potentially overlapping functions between CIA2, CIL, and their barley homologs and to the function of the putative cTPs of CIA2 and CIL.

10.
Front Plant Sci ; 12: 652116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046050

RESUMO

Changes in climate are likely to have a negative impact on water availability and soil fertility in many maize-growing agricultural areas. The development of high-throughput phenotyping platforms provides a new prospect for dissecting the dynamic complex plant traits such as abiotic stress tolerance into simple components. The growth phenotypes of 20 maize (Zea mays L.) inbred lines were monitored in a non-invasive way under control, nitrogen, and water limitation as well as under combined nitrogen and water stress using an automated phenotyping system in greenhouse conditions. Thirteen biomass-related and morphophysiological traits were extracted from RGB images acquired at 33 time points covering developmental stages from leaf count 5 at the first imaging date to leaf count 10-13 at the final harvest. For these traits, genetic differences were identified and dynamic developmental trends during different maize growth stages were analyzed. The difference between control and water stress was detectable 3-10 days after the beginning of stress depending on the genotype, while the effect of limited nitrogen supply only induced subtle phenotypic effects. Phenotypic traits showed different response dynamics as well as multiple and changing interaction patterns with stress progression. The estimated biovolume, leaf area index, and color ratios were found to be stress-responsive at different stages of drought stress progression and thereby represent valuable reference indicators in the selection of drought-adaptive genotypes. Furthermore, genotypes could be grouped according to two typical growth dynamic patterns in water stress treatments by c-means clustering analysis. Inbred lines with high drought adaptability across time and development were identified and could serve as a basis for designing novel genotypes with desired, stage-specific growth phenotypes under water stress through pyramiding. Drought recovery potential may play an equal role as drought tolerance in plant drought adaptation.

11.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33589928

RESUMO

This article describes some use case studies and self-assessments of FAIR status of de.NBI services to illustrate the challenges and requirements for the definition of the needs of adhering to the FAIR (findable, accessible, interoperable and reusable) data principles in a large distributed bioinformatics infrastructure. We address the challenge of heterogeneity of wet lab technologies, data, metadata, software, computational workflows and the levels of implementation and monitoring of FAIR principles within the different bioinformatics sub-disciplines joint in de.NBI. On the one hand, this broad service landscape and the excellent network of experts are a strong basis for the development of useful research data management plans. On the other hand, the large number of tools and techniques maintained by distributed teams renders FAIR compliance challenging.


Assuntos
Gerenciamento de Dados/métodos , Metadados , Redes Neurais de Computação , Proteômica/métodos , Software , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cooperação Internacional , Fenótipo , Plantas/genética , Proteoma , Autoavaliação (Psicologia) , Fluxo de Trabalho
12.
Gigascience ; 9(10)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33090199

RESUMO

BACKGROUND: The FAIR data principle as a commitment to support long-term research data management is widely accepted in the scientific community. Although the ELIXIR Core Data Resources and other established infrastructures provide comprehensive and long-term stable services and platforms for FAIR data management, a large quantity of research data is still hidden or at risk of getting lost. Currently, high-throughput plant genomics and phenomics technologies are producing research data in abundance, the storage of which is not covered by established core databases. This concerns the data volume, e.g., time series of images or high-resolution hyper-spectral data; the quality of data formatting and annotation, e.g., with regard to structure and annotation specifications of core databases; uncovered data domains; or organizational constraints prohibiting primary data storage outside institional boundaries. RESULTS: To share these potentially dark data in a FAIR way and master these challenges the ELIXIR Germany/de.NBI service Plant Genomic and Phenomics Research Data Repository (PGP) implements a "bring the infrastructure to the data" approach, which allows research data to be kept in place and wrapped in a FAIR-aware software infrastructure. This article presents new features of the e!DAL infrastructure software and the PGP repository as a best practice on how to easily set up FAIR-compliant and intuitive research data services. Furthermore, the integration of the ELIXIR Authentication and Authorization Infrastructure (AAI) and data discovery services are introduced as means to lower technical barriers and to increase the visibility of research data. CONCLUSION: The e!DAL software matured to a powerful and FAIR-compliant infrastructure, while keeping the focus on flexible setup and integration into existing infrastructures and into the daily research process.


Assuntos
Disseminação de Informação , Software , Bases de Dados Factuais , Genômica , Plantas
13.
Plant Methods ; 16: 95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670387

RESUMO

BACKGROUND: Automated segmentation of large amount of image data is one of the major bottlenecks in high-throughput plant phenotyping. Dynamic optical appearance of developing plants, inhomogeneous scene illumination, shadows and reflections in plant and background regions complicate automated segmentation of unimodal plant images. To overcome the problem of ambiguous color information in unimodal data, images of different modalities can be combined to a virtual multispectral cube. However, due to motion artefacts caused by the relocation of plants between photochambers the alignment of multimodal images is often compromised by blurring artifacts. RESULTS: Here, we present an approach to automated segmentation of greenhouse plant images which is based on co-registration of fluorescence (FLU) and of visible light (VIS) camera images followed by subsequent separation of plant and marginal background regions using different species- and camera view-tailored classification models. Our experimental results including a direct comparison with manually segmented ground truth data show that images of different plant types acquired at different developmental stages from different camera views can be automatically segmented with the average accuracy of 93 % ( S D = 5 % ) using our two-step registration-classification approach. CONCLUSION: Automated segmentation of arbitrary greenhouse images exhibiting highly variable optical plant and background appearance represents a challenging task to data classification techniques that rely on detection of invariances. To overcome the limitation of unimodal image analysis, a two-step registration-classification approach to combined analysis of fluorescent and visible light images was developed. Our experimental results show that this algorithmic approach enables accurate segmentation of different FLU/VIS plant images suitable for application in fully automated high-throughput manner.

14.
Front Plant Sci ; 11: 743, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582262

RESUMO

Image-based phenotyping is a non-invasive method that permits the dynamic evaluation of plant features during growth, which is especially important for understanding plant adaptation and temporal dynamics of responses to environmental cues such as water deficit or drought. The aim of the present study was to use high-throughput imaging in order to assess the variation and dynamics of growth and development during drought in a spring barley population and to investigate associations between traits measured in time and yield-related traits measured after harvesting. Plant material covered recombinant inbred line population derived from a cross between European and Syrian cultivars. After placing the plants on the platform (28th day after sowing), drought stress was applied for 2 weeks. Top and side cameras were used to capture images daily that covered the visible range of the light spectrum, fluorescence signals, and the near infrared spectrum. The image processing provided 376 traits that were subjected to analysis. After 32 days of image phenotyping, the plants were cultivated in the greenhouse under optimal watering conditions until ripening, when several architecture and yield-related traits were measured. The applied data analysis approach, based on the clustering of image-derived traits into groups according to time profiles of statistical and genetic parameters, permitted to select traits representative for inference from the experiment. In particular, drought effects for 27 traits related to convex hull geometry, texture, proportion of brown pixels and chlorophyll intensity were found to be highly correlated with drought effects for spike traits and thousand grain weight.

15.
New Phytol ; 227(1): 260-273, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32171029

RESUMO

Enabling data reuse and knowledge discovery is increasingly critical in modern science, and requires an effort towards standardising data publication practices. This is particularly challenging in the plant phenotyping domain, due to its complexity and heterogeneity. We have produced the MIAPPE 1.1 release, which enhances the existing MIAPPE standard in coverage, to support perennial plants, in structure, through an explicit data model, and in clarity, through definitions and examples. We evaluated MIAPPE 1.1 by using it to express several heterogeneous phenotyping experiments in a range of different formats, to demonstrate its applicability and the interoperability between the various implementations. Furthermore, the extended coverage is demonstrated by the fact that one of the datasets could not have been described under MIAPPE 1.0. MIAPPE 1.1 marks a major step towards enabling plant phenotyping data reusability, thanks to its extended coverage, and especially the formalisation of its data model, which facilitates its implementation in different formats. Community feedback has been critical to this development, and will be a key part of ensuring adoption of the standard.


Assuntos
Fenômica , Plantas , Plantas/genética
16.
J Integr Bioinform ; 16(4)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913851

RESUMO

Genetic variance within the genotype of population and its mapping to phenotype variance in a systematic and high throughput manner is of interest for biodiversity and breeding research. Beside the established and efficient high throughput genotype technologies, phenotype capabilities got increased focus in the last decade. This results in an increasing amount of phenotype data from well scaling, automated sensor platform. Thus, data stewardship is a central component to make experimental data from multiple domains interoperable and re-usable. To ensure a standard and comprehensive sharing of scientific and experimental data among domain experts, FAIR data principles are utilized for machine read-ability and scale-ability. In this context, BrAPI consortium, provides a comprehensive and commonly agreed FAIRed guidelines to offer a BrAPI layered scientific data in a RESTful manner. This paper presents the concepts, best practices and implementations to meet these challenges. As one of the worlds leading plant research institutes it is of vital interest for the IPK-Gatersleben to transform legacy data infrastructures into a bio-digital resource center for plant genetics resources (PGR). This paper also demonstrates the benefits of integrated database back-ends, established data stewardship processes, and FAIR data exposition in a machine-readable, highly scalable programmatic interfaces.


Assuntos
Bases de Dados Genéticas , Plantas/genética , Linguagens de Programação , Biologia Computacional , Gestão da Informação , Internet , Fenótipo , Melhoramento Vegetal , Sementes/genética , Interface Usuário-Computador
17.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-33728038

RESUMO

Experimental data is only useful to other researchers if it is findable, accessible, interoperable, and reusable (FAIR). The ISA-Tab framework enables scientists to publish metadata about their experiments in a plain text, machine-readable format that aims to confer that interoperability and reusability. A Python software package (isatools) is currently being developed to programmatically produce these metadata files. For Java-based environments, there is no equivalent solution yet. While the isatools package provides a lot of flexibility and a wealth of different features for the Python ecosystem, a package for JVM-based applications might offer the speed and scalability needed for writing very large ISA-Tab files, making the ISA framework available in an even wider range of situations and environments. Here we present a light-weight and scalable Java library (isa4j) for generating metadata files in the ISA-Tab format, which elegantly integrates into existing JVM applications and especially shines at generating very large files. It is modeled after the ISA core specifications and designed in keeping with isatools conventions, making it consistent and intuitive to use for the community. isa4j is implemented in Java (JDK11+) and freely available under the terms of the MIT license from the Central Maven Repository ( https://mvnrepository.com/artifact/de.ipk-gatersleben/isa4j). The source code, detailed documentation, usage examples and performance evaluations can be found at https://github.com/IPK-BIT/isa4j.


Assuntos
Metadados , Software , Redação
18.
Sci Rep ; 9(1): 19674, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873104

RESUMO

Quantitative characterization of root system architecture and its development is important for the assessment of a complete plant phenotype. To enable high-throughput phenotyping of plant roots efficient solutions for automated image analysis are required. Since plants naturally grow in an opaque soil environment, automated analysis of optically heterogeneous and noisy soil-root images represents a challenging task. Here, we present a user-friendly GUI-based tool for semi-automated analysis of soil-root images which allows to perform an efficient image segmentation using a combination of adaptive thresholding and morphological filtering and to derive various quantitative descriptors of the root system architecture including total length, local width, projection area, volume, spatial distribution and orientation. The results of our semi-automated root image segmentation are in good conformity with the reference ground-truth data (mean dice coefficient = 0.82) compared to IJ_Rhizo and GiAroots. Root biomass values calculated with our tool within a few seconds show a high correlation (Pearson coefficient = 0.8) with the results obtained using conventional, pure manual segmentation approaches. Equipped with a number of adjustable parameters and optional correction tools our software is capable of significantly accelerating quantitative analysis and phenotyping of soil-, agar- and washed root images.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Raízes de Plantas/anatomia & histologia , Algoritmos , Arabidopsis/anatomia & histologia , Gráficos por Computador , Ensaios de Triagem em Larga Escala , Fenótipo , Software , Solo , Interface Usuário-Computador
19.
PLoS One ; 14(9): e0221203, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31568494

RESUMO

With the introduction of multi-camera systems in modern plant phenotyping new opportunities for combined multimodal image analysis emerge. Visible light (VIS), fluorescence (FLU) and near-infrared images enable scientists to study different plant traits based on optical appearance, biochemical composition and nutrition status. A straightforward analysis of high-throughput image data is hampered by a number of natural and technical factors including large variability of plant appearance, inhomogeneous illumination, shadows and reflections in the background regions. Consequently, automated segmentation of plant images represents a big challenge and often requires an extensive human-machine interaction. Combined analysis of different image modalities may enable automatisation of plant segmentation in "difficult" image modalities such as VIS images by utilising the results of segmentation of image modalities that exhibit higher contrast between plant and background, i.e. FLU images. For efficient segmentation and detection of diverse plant structures (i.e. leaf tips, flowers), image registration techniques based on feature point (FP) matching are of particular interest. However, finding reliable feature points and point pairs for differently structured plant species in multimodal images can be challenging. To address this task in a general manner, different feature point detectors should be considered. Here, a comparison of seven different feature point detectors for automated registration of VIS and FLU plant images is performed. Our experimental results show that straightforward image registration using FP detectors is prone to errors due to too large structural difference between FLU and VIS modalities. We show that structural image enhancement such as background filtering and edge image transformation significantly improves performance of FP algorithms. To overcome the limitations of single FP detectors, combination of different FP methods is suggested. We demonstrate application of our enhanced FP approach for automated registration of a large amount of FLU/VIS images of developing plant species acquired from high-throughput phenotyping experiments.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Plantas/anatomia & histologia , Algoritmos , Clorofila/metabolismo , Fluorescência , Humanos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Iluminação , Fenótipo , Fotografação/métodos , Desenvolvimento Vegetal , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Plantas/metabolismo
20.
Front Plant Sci ; 10: 814, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297124

RESUMO

Phenotypic measurements under controlled cultivation conditions are essential to gain a mechanistic understanding of plant responses to environmental impacts and thus for knowledge-based improvement of their performance under natural field conditions. Twenty maize inbred lines (ILs) were phenotyped in response to two levels of water and nitrogen supply (control and stress) and combined nitrogen and water deficit. Over a course of 5 weeks (from about 4-leaf stage to the beginning of the reproductive stage), maize phenology and growth were monitored by using a high-throughput phenotyping platform for daily acquisition of images in different spectral ranges. The focus of the present study is on the measurements taken at the time of maximum water stress (for traits that reflect plant physiological properties) and at the end of the experiment (for traits that reflect plant architectural and biomass-related traits). Twenty-five phenotypic traits extracted from the digital image data that support biological interpretation of plant growth were selected for their predictive value for mid-season shoot biomass accumulation. Measured fresh and dry weights after harvest were used to calculate various indices (water-use efficiency, physiological nitrogen-use efficiency, specific plant weight) and to establish correlations with image-derived phenotypic features. Also, score indices based on dry weight were used to identify contrasting ILs in terms of productivity and tolerance to stress, and their means for image-derived and manually measured traits were compared. Color-related traits appear to be indicative of plant performance and photosystem II operating efficiency might be an importance physiological parameter of biomass accumulation, particularly under severe stress conditions. Also, genotypes showing greater leaf area may be better adapted to abiotic stress conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...