Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 2600, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422606

RESUMO

Pseudomonas aeruginosa uses long, thin fibres called type IV pili (T4P) for adherence to surfaces, biofilm formation, and twitching motility. A conserved subcomplex of PilMNOP is required for extension and retraction of T4P. To better understand its function, we attempted to co-crystallize the soluble periplasmic portions of PilNOP, using reductive surface methylation to promote crystal formation. Only PilOΔ109 crystallized; its structure was determined to 1.7 Å resolution using molecular replacement. This new structure revealed two novel features: a shorter N-terminal α1-helix followed by a longer unstructured loop, and a discontinuous ß-strand in the second αßß motif, mirroring that in the first motif. PISA analysis identified a potential dimer interface with striking similarity to that of the PilO homolog EpsM from the Vibrio cholerae type II secretion system. We identified highly conserved residues within predicted unstructured regions in PilO proteins from various Pseudomonads and performed site-directed mutagenesis to assess their role in T4P function. R169D and I170A substitutions decreased surface piliation and twitching motility without disrupting PilO homodimer formation. These residues could form important protein-protein interactions with PilN or PilP. This work furthers our understanding of residues critical for T4aP function.


Assuntos
Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência Conservada , Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Pseudomonas aeruginosa/metabolismo , Cristalização , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína
2.
J Mol Biol ; 376(5): 1377-87, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18207163

RESUMO

Actinorhodin, an antibiotic produced by Streptomyces coelicolor, is exported from the cell by the ActA efflux pump. actA is divergently transcribed from actR, which encodes a TetR-like transcriptional repressor. We showed previously that ActR represses transcription by binding to an operator from the actA/actR intergenic region. Importantly, actinorhodin itself or various actinorhodin biosynthetic intermediates can cause ActR to dissociate from its operator, leading to derepression. This suggests that ActR may mediate timely self-resistance to an endogenously produced antibiotic by responding to one of its biosynthetic precursors. Here, we report the structural basis for this precursor-mediated derepression with crystal structures of homodimeric ActR by itself and in complex with either actinorhodin or the actinorhodin biosynthetic intermediate (S)-DNPA [4-dihydro-9-hydroxy-1-methyl-10-oxo-3-H-naphtho-[2,3-c]-pyran-3-(S)-acetic acid]. The ligand-binding tunnel in each ActR monomer has a striking hydrophilic/hydrophobic/hydrophilic arrangement of surface residues that accommodate either one hexacyclic actinorhodin molecule or two back-to-back tricyclic (S)-DNPA molecules. Moreover, our work also reveals the strongest structural evidence to date that TetR-mediated antibiotic resistance may have been acquired from an antibiotic-producer organism.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Naftalenos/metabolismo , Piranos/metabolismo , Streptomyces coelicolor/química , Antraquinonas/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica
3.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 3): 324-30, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16510979

RESUMO

Pleckstrin is an important intracellular protein involved in the phosphoinositide-signalling pathways of platelet activation. This protein contains both N- and C-terminal pleckstrin-homology (PH) domains (N-PH and C-PH). The crystal structure of C-PH was solved by molecular replacement and refined at 2.1 Angstroms resolution. Two molecules were observed within the asymmetric unit and it is proposed that the resulting dimer interface could contribute to the previously observed oligomerization of pleckstrin in resting platelets. Structural comparisons between the phosphoinositide-binding loops of the C-PH crystal structure and the PH domains of DAPP1 and TAPP1, the N-terminal PH domain of pleckstrin and a recently described solution structure of C-PH are presented and discussed.


Assuntos
Proteínas de Ligação a DNA/química , Aminoácidos/química , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Ligação Proteica , Conformação Proteica
4.
EMBO J ; 20(19): 5521-31, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11574484

RESUMO

Human MutLalpha, a heterodimer of hMLH1 and hPMS2, is essential for DNA mismatch repair. Inactivation of the hmlh1 or hpms2 genes by mutation or epigenesis causes genomic instability and a predisposition to hereditary non-polyposis cancer. We report here the X-ray crystal structures of the conserved N-terminal 40 kDa fragment of hPMS2, NhPMS2, and its complexes with ATPgammaS and ADP at 1.95, 2.7 and 2.7 A resolution, respectively. The NhPMS2 structures closely resemble the ATPase fragment of Escherichia coli MutL, which coordinates protein-protein interactions in mismatch repair by undergoing structural transformation upon binding of ATP. Unlike the E.coli MutL, whose ATPase activity requires protein dimerization, the monomeric form of NhPMS2 is active both in ATP hydrolysis and DNA binding. NhPMS2 is the first example of a GHL ATPase active as a monomer, suggesting that its activity may be modulated by hMLH1 in MutLalpha, and vice versa. The potential heterodimer interface revealed by crystallography provides a mutagenesis target for functional studies of MutLalpha.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/análogos & derivados , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli , Proteínas de Neoplasias , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Pareamento Incorreto de Bases , Sítios de Ligação , Proteínas de Transporte , Neoplasias Colorretais Hereditárias sem Polipose/genética , Cristalografia por Raios X , Reparo do DNA , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Modelos Moleculares , Dados de Sequência Molecular , Proteínas MutL , Fragmentos de Peptídeos/química , Homologia de Sequência de Aminoácidos
5.
Mol Cell ; 7(1): 1-12, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11172706

RESUMO

The MutS protein initiates DNA mismatch repair by recognizing mispaired and unpaired bases embedded in duplex DNA and activating endo- and exonucleases to remove the mismatch. Members of the MutS family also possess a conserved ATPase activity that belongs to the ATP binding cassette (ABC) superfamily. Here we report the crystal structure of a ternary complex of MutS-DNA-ADP and assays of initiation of mismatch repair in conjunction with perturbation of the composite ATPase active site by mutagenesis. These studies indicate that MutS has to bind both ATP and the mismatch DNA simultaneously in order to activate the other mismatch repair proteins. We propose that the MutS ATPase activity plays a proofreading role in DNA mismatch repair, verification of mismatch recognition, and authorization of repair.


Assuntos
Adenosina Trifosfatases , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pareamento Incorreto de Bases/genética , Enzimas Reparadoras do DNA , Reparo do DNA/genética , Proteínas de Escherichia coli , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Sítios de Ligação/genética , Cristalografia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Ativação Enzimática , Humanos , Hidrólise , Proteínas MutL , Proteína MutS de Ligação de DNA com Erro de Pareamento , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/metabolismo , Ligação Proteica/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
6.
EMBO J ; 19(22): 5962-70, 2000 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11080143

RESUMO

XRCC4 is essential for carrying out non-homologous DNA end joining (NHEJ) in all eukaryotes and, in particular, V(D)J recombination in vertebrates. Xrcc4 protein forms a complex with DNA ligase IV that rejoins two DNA ends in the last step of V(D)J recombination and NHEJ to repair double strand breaks. XRCC4-defective cells are extremely sensitive to ionizing radiation, and disruption of the XRCC4 gene results in embryonic lethality in mice. Here we report the crystal structure of a functional fragment of Xrcc4 at 2.7 A resolution. Xrcc4 protein forms a strikingly elongated dumb-bell-like tetramer. Each of the N-terminal globular head domains consists of a beta-sandwich and a potentially DNA-binding helix- turn-helix motif. The C-terminal stalk comprising a single alpha-helix >120 A in length is partly incorporated into a four-helix bundle in the Xrcc4 tetramer and partly involved in interacting with ligase IV. The Xrcc4 structure suggests a possible mode of coupling ligase IV association with DNA binding for effective ligation of DNA ends.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Sítios de Ligação , Proteínas de Ciclo Celular/química , Cristalização , Cristalografia por Raios X , DNA/química , DNA/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/química , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/genética , Dimerização , Humanos , Substâncias Macromoleculares , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
8.
EMBO J ; 16(10): 2646-55, 1997 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-9184211

RESUMO

Tn10, like several other transposons, exhibits a marked preference for integration into particular target sequences. Such sequences are referred to as integration hotspots and have been used to define a consensus target site in Tn10 transposition. We demonstrate that a Tn10 hotspot called HisG1, which was identified originally in vivo, also functions as an integration hotspot in vitro in a reaction where the HisG1 sequence is present on a short DNA oligomer. We use this in vitro system to define factors which are important for the capture of the HisG1 target site. We demonstrate that although divalent metal ions are not essential for HisG1 target capture, they greatly facilitate capture of a mutated HisG1 site. Analysis of catalytic transposase mutants further demonstrates that the DDE motif plays a critical role in 'divalent metal ion-dependent' target capture. Analysis of two other classes of transposase mutants, Exc+ Int- (which carry out transposon excision but not integration) and ATS (altered target specificity), demonstrates that while a particular ATS transposase binds HisG1 mutants better than wild-type transposase, Exc+ Int- mutants are defective in HisG1 capture, further defining the properties of these classes of mutants. Possible mechanisms for the above observations are considered.


Assuntos
DNA Nucleotidiltransferases/metabolismo , Elementos de DNA Transponíveis/genética , Recombinação Genética , Sequência de Bases , Cátions Bivalentes/metabolismo , Sequência Consenso , DNA Nucleotidiltransferases/genética , Heparina/farmacologia , Modelos Genéticos , Conformação de Ácido Nucleico , Especificidade por Substrato , Transposases
9.
EMBO J ; 15(10): 2547-55, 1996 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-8665862

RESUMO

Tn10 transposition takes place by a non-replicative mechanism in which the transposon is excised from donor DNA and integrated into a target site. Mg2+ is an essential cofactor in this reaction. We have examined the Mg2+ requirements at various steps in Tn10 transposition. Results presented here demonstrate that Tn10 excision can occur efficiently at a 16-fold lower Mg2+ concentration than strand transfer and that, at Mg2+ concentrations in the range of 60-fold below the wildt-ype optimum, double strand cleavage events at the two transposon ends are completely uncoupled. These experiments identify specific breakpoints in Tn10 transposition which are sensitive to Mg2+ concentration. Whereas the uncoupling of double strand cleavage events at the two transposon ends most likely reflects the inability of two separate IS10 transposase monomers in the synaptic complex to bind Mg2+, the uncoupling of transposon excision from strand transfer is expected to reflect either a conformational change in the active site or the existence of an Mg2+ binding site which functions specifically in target interactions. We also show that Mn2+ relaxes target specificity in Tn10 transposition and suppresses a class of mutants which are blocked specifically for integration. These observations can be explained by a model in which sequence-specific target site binding is tightly coupled to a conformational change in the synaptic complex which is required for catalysis of strand transfer.


Assuntos
Cálcio/fisiologia , DNA Nucleotidiltransferases/metabolismo , Elementos de DNA Transponíveis/genética , DNA Bacteriano/metabolismo , Magnésio/fisiologia , Manganês/fisiologia , Sequência de Bases , DNA Bacteriano/genética , Escherichia coli/genética , Integrases , Dados de Sequência Molecular , Fosforilação , Recombinação Genética , Transposases
10.
Genetics ; 137(2): 343-52, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8070648

RESUMO

IS10 transposase mediates excision and integration reactions in Tn10/IS10 transposition. Mutations in IS10 transposase that specifically block integration have previously been identified; however, the mechanism by which these mutations block integration has not been established. One approach to defining the basis of this block is to identify ways in which the original defect can be corrected. The approach we have taken toward this end has been to isolate and characterize intragenic second site suppressors to two different integration-defective mutants. Of the second site suppressors identified, one, CY134, is of particular interest for two reasons. First, it suppresses at least seven different mutations that confer an integration-defective phenotype. Interestingly, these mutations map in two separate segments of transposase, designated patch I and patch II. Second, CY134 on its own has previously been shown to relax the target DNA sequence requirements for Tn10 integration. We provide evidence that suppression by CY134 is not simply a consequence of this mutation conferring a general "transposition up" phenotype, but rather is due to correcting the original defect. Possible mechanisms of suppression for both CY134 and other second site suppressors are considered.


Assuntos
Elementos de DNA Transponíveis , Escherichia coli/genética , Íntrons , Nucleotidiltransferases/metabolismo , Supressão Genética , Transposases , Bacteriófago lambda/genética , Sequência de Bases , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Hidroxilamina , Hidroxilaminas , Dados de Sequência Molecular , Mutagênese , Nucleotidiltransferases/genética , Fenótipo , Plasmídeos , Mapeamento por Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...