Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(3): 1619-1630, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33444456

RESUMO

Human DNA ligase I (LIG1) is the main replicative ligase and it also seals DNA breaks to complete DNA repair and recombination pathways. Immune compromised patients harbor hypomorphic LIG1 alleles encoding substitutions of conserved arginine residues, R771W and R641L, that compromise LIG1 activity through poorly defined mechanisms. To understand the molecular basis of LIG1 syndrome mutations, we determined high resolution X-ray structures and performed systematic biochemical characterization of LIG1 mutants using steady-state and pre-steady state kinetic approaches. Our results unveil a cooperative network of plastic DNA-LIG1 interactions that connect DNA substrate engagement with productive binding of Mg2+ cofactors for catalysis. LIG1 syndrome mutations destabilize this network, compromising Mg2+ binding affinity, decreasing ligation efficiency, and leading to elevated abortive ligation that may underlie the disease pathology. These findings provide novel insights into the fundamental mechanism by which DNA ligases engage with a nicked DNA substrate, and they suggest that disease pathology of LIG1 syndrome could be modulated by Mg2+ levels.


Assuntos
DNA Ligase Dependente de ATP/química , DNA Ligase Dependente de ATP/genética , Mutação , Doenças da Imunodeficiência Primária/genética , Sítios de Ligação , DNA/metabolismo , DNA Ligase Dependente de ATP/metabolismo , Humanos , Ligantes , Magnésio/química , Modelos Moleculares , Dobramento de Proteína , Síndrome
2.
Nat Commun ; 10(1): 5431, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780661

RESUMO

DNA ligases catalyze the joining of DNA strands to complete DNA replication, recombination and repair transactions. To protect the integrity of the genome, DNA ligase 1 (LIG1) discriminates against DNA junctions harboring mutagenic 3'-DNA mismatches or oxidative DNA damage, but how such high-fidelity ligation is enforced is unknown. Here, X-ray structures and kinetic analyses of LIG1 complexes with undamaged and oxidatively damaged DNA unveil that LIG1 employs Mg2+-reinforced DNA binding to validate DNA base pairing during the adenylyl transfer and nick-sealing ligation reaction steps. Our results support a model whereby LIG1 fidelity is governed by a high-fidelity (HiFi) interface between LIG1, Mg2+, and the DNA substrate that tunes the enzyme to release pro-mutagenic DNA nicks. In a second tier of protection, LIG1 activity is surveilled by Aprataxin (APTX), which suppresses mutagenic and abortive ligation at sites of oxidative DNA damage.


Assuntos
DNA Ligase Dependente de ATP/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Magnésio/metabolismo , Proteínas Nucleares/metabolismo , DNA/ultraestrutura , Quebras de DNA de Cadeia Simples , Dano ao DNA , DNA Ligase Dependente de ATP/ultraestrutura , Reparo do DNA , Replicação do DNA , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Conformação de Ácido Nucleico , Oxirredução , Estrutura Terciária de Proteína , Reparo de DNA por Recombinação
3.
J Clin Invest ; 128(12): 5489-5504, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30395541

RESUMO

We report the molecular, cellular, and clinical features of 5 patients from 3 kindreds with biallelic mutations in the autosomal LIG1 gene encoding DNA ligase 1. The patients exhibited hypogammaglobulinemia, lymphopenia, increased proportions of circulating γδT cells, and erythrocyte macrocytosis. Clinical severity ranged from a mild antibody deficiency to a combined immunodeficiency requiring hematopoietic stem cell transplantation. Using engineered LIG1-deficient cell lines, we demonstrated chemical and radiation defects associated with the mutant alleles, which variably impaired the DNA repair pathway. We further showed that these LIG1 mutant alleles are amorphic or hypomorphic, and exhibited variably decreased enzymatic activities, which lead to premature release of unligated adenylated DNA. The variability of the LIG1 genotypes in the patients was consistent with that of their immunological and clinical phenotypes. These data suggest that different forms of autosomal recessive, partial DNA ligase 1 deficiency underlie an immunodeficiency of variable severity.


Assuntos
Alelos , DNA Ligase Dependente de ATP , Síndromes de Imunodeficiência , Mutação , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/imunologia , Células HEK293 , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia
4.
Biochemistry ; 56(8): 1117-1129, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28165732

RESUMO

DNA ligases, essential to both in vivo genome integrity and in vitro molecular biology, catalyze phosphodiester bond formation between adjacent 3'-OH and 5'-phosphorylated termini in dsDNA. This reaction requires enzyme self-adenylylation, using ATP or NAD+ as a cofactor, and AMP release concomitant with phosphodiester bond formation. In this study, we present the first fast time scale binding kinetics of T4 DNA ligase to both nicked substrate DNA (nDNA) and product-equivalent non-nicked dsDNA, as well as binding and release kinetics of AMP. The described assays utilized a fluorescein-dT labeled DNA substrate as a reporter for ligase·DNA interactions via stopped-flow fluorescence spectroscopy. The analysis revealed that binding to nDNA by the active adenylylated ligase occurs in two steps, an initial rapid association equilibrium followed by a transition to a second bound state prior to catalysis. Furthermore, the ligase binds and dissociates from nicked and nonsubstrate dsDNA rapidly with initial association affinities on the order of 100 nM regardless of enzyme adenylylation state. DNA binding occurs through a two-step mechanism in all cases, confirming prior proposals of transient binding followed by a transition to a productive ligase·nDNA (Lig·nDNA) conformation but suggesting that weaker nonproductive "closed" complexes are formed as well. These observations demonstrate the mechanistic underpinnings of competitive inhibition by rapid binding of nonsubstrate DNA, and of substrate inhibition by blocking of the self-adenylylation reaction through nick binding by deadenylylated ligase. Our analysis further reveals that product release is not the rate-determining step in turnover.


Assuntos
DNA Ligases/metabolismo , DNA/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Cinética , Ligação Proteica
5.
Science ; 343(6173): 881-5, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24505133

RESUMO

Flaviviruses, the human pathogens responsible for dengue fever, West Nile fever, tick-borne encephalitis, and yellow fever, are endemic in tropical and temperate parts of the world. The flavivirus nonstructural protein 1 (NS1) functions in genome replication as an intracellular dimer and in immune system evasion as a secreted hexamer. We report crystal structures for full-length, glycosylated NS1 from West Nile and dengue viruses. The NS1 hexamer in crystal structures is similar to a solution hexamer visualized by single-particle electron microscopy. Recombinant NS1 binds to lipid bilayers and remodels large liposomes into lipoprotein nanoparticles. The NS1 structures reveal distinct domains for membrane association of the dimer and interactions with the immune system and are a basis for elucidating the molecular mechanism of NS1 function.


Assuntos
Membrana Celular/virologia , Sistema Imunitário/virologia , Proteínas não Estruturais Virais/química , Membrana Celular/química , Cristalografia por Raios X , Proteína DEAD-box 58 , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/imunologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Sistema Imunitário/química , Imunidade Inata , Bicamadas Lipídicas , Microscopia Eletrônica , Conformação Proteica , Multimerização Proteica , Receptores Imunológicos , Proteínas não Estruturais Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...