Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Drug Metab Dispos ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653502

RESUMO

The pharmacokinetics (PK) of methylprednisolone (MPL) exhibited tissue-specific saturable binding and reversible conversion with its metabolite, methylprednisone (MPN). Blood and 11 tissues were collected in male rats after intravenous (IV) bolus doses of 50 mg/kg MPL and 20 mg/kg MPN and upon IV infusion of MPL and MPN at 0.3, 3, and 10 mg/h/kg. The concentrations of MPL and MPN were simultaneously measured. A comprehensive physiologically based pharmacokinetic (PBPK) model was applied to describe the plasma and tissue profiles and estimate PK parameters of the MPL/MPN interconversion system. Both dosed and formed MPL and MPN were in rapid equilibrium or achieved steady-state rapidly in plasma and tissues. MPL tissue partitioning was nonlinear with highest capacity in liver (322.9 ng/mL), followed by kidney, heart, intestine, skin, spleen, bone, brain, muscle, and lowest in adipose (2.74 ng/mL), and displayed high penetration in lung. The tissue partition coefficient of MPN was linear but widely variable (0.15~5.38) across most tissues with nonlinear binding in liver and kidney. The conversion of MPL to MPN occurred in kidney, lung, and intestine with total clearance of 429 mL/h, and the back conversion occurred in liver and kidney at 1342 mL/h. The irreversible elimination clearance of MPL was 789 mL/h from liver and that of MPN was 2758 mL/h with liver accounting for 44%, lung 35%, and kidney 21%. The reversible metabolism elevated MPL exposure in rats by 13%. This highly complex PBPK model provided unique and comprehensive insights into the disposition of a major corticosteroid. Significance Statement Our dual PBPK study and model of MPL/MPN with multiple complexities reasonably characterized and parameterized their disposition, localized their reversible conversion, rendered advanced appreciation of tissue partitioning, and provided greater insights into the interpretation of their pharmacodynamics in rats. Drug knowledge gained in this study may be translatable to higher-order species to appreciate the clinical utility of MPL. The complex model itself is instructive for advanced PBPK analysis of drugs with reversible metabolism and/or nonlinear tissue partitioning features.

2.
J Clin Pharmacol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682893

RESUMO

Human genetic variation (polymorphisms) in genes coding proteins involved in the absorption, distribution, metabolism, and elimination (ADME) of drugs can have a strong effect on drug exposure and downstream efficacy and safety outcomes. Vamorolone, a dissociative steroidal anti-inflammatory drug for treating Duchenne muscular dystrophy (DMD), primarily undergoes oxidation by CYP3A4 and CYP3A5 and glucuronidation by UDP-glucuronosyltransferases. This work assesses the pharmacokinetics (PKs) of vamorolone and sources of interindividual variability (IIV) in 81 steroid-naïve boys with DMD aged 4 to <7 years old considering the genetic polymorphisms of CYPS3A4 (CYP3A4*22, CYP3A4*1B), CYP3A5 (CYP3A5*3), and UGT1A1 (UGT1A1*60) utilizing population PK modeling. A one-compartment model with zero-order absorption (Tk0, duration of absorption), linear clearance (CL/F), and volume (V/F) describes the plasma PK data for boys with DMD receiving a wide range of vamorolone doses (0.25-6 mg/kg/day). The typical CL/F and V/F values of vamorolone were 35.8 L/h and 119 L, with modest IIV. The population Tk0 was 3.14 h yielding an average zero-order absorption rate (k0) of 1.16 mg/kg/h with similar absorption kinetics across subjects at the same vamorolone dose (i.e., no IIV on Tk0). The covariate analysis showed that none of the genetic covariates had any significant impact on the PKs of vamorolone in boys with DMD. Thus, the PKs of vamorolone is very consistent in these young boys with DMD.

3.
J Pharm Sci ; 113(1): 214-227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38498417

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is often chemotherapy-resistant, and novel drug combinations would fill an unmet clinical need. Previously we reported synergistic cytotoxic effects of gemcitabine and trabectedin on pancreatic cancer cells, but underlying protein-level interaction mechanisms remained unclear. We employed a reliable, sensitive, comprehensive, quantitative, high-throughput IonStar proteomic workflow to investigate the time course of gemcitabine and trabectedin effects, alone and combined, upon pancreatic cancer cells. MiaPaCa-2 cells were incubated with vehicle (controls), gemcitabine, trabectedin, and their combinations over 72 hours. Samples were collected at intervals and analyzed using the label-free IonStar liquid chromatography-mass spectrometry (LC-MS/MS) workflow to provide temporal quantification of protein expression for 4,829 proteins in four experimental groups. To characterize diverse signal transduction pathways, a comprehensive systems pharmacodynamic (SPD) model was developed. The analysis is presented in two parts. Here, Part I describes drug responses in cancer cell growth and migration pathways included in the full model: receptor tyrosine kinase- (RTK), integrin-, G-protein coupled receptor- (GPCR), and calcium-signaling pathways. The developed model revealed multiple underlying mechanisms of drug actions, provides insight into the basis of drug interaction synergism, and offers a scientific rationale for potential drug combination strategies.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Trabectedina/farmacologia , Desoxicitidina/farmacologia , Proteômica , Cromatografia Líquida , Linhagem Celular Tumoral , Espectrometria de Massas em Tandem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais
4.
J Pharm Sci ; 113(1): 95-117, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279835

RESUMO

The classical organ clearance models have been proposed to relate the plasma clearance CLp to probable mechanism(s) of hepatic clearance. However, the classical models assume the intrinsic capability of drug elimination (CLu,int) that is physically segregated from the vascular blood but directly acts upon the unbound drug concentration in the blood (fubCavg), and do not handle the transit-time delay between the inlet/outlet concentrations in their closed-form clearance equations. Therefore, we propose unified model structures that can address the internal blood concentration patterns of clearance organs in a more mechanistic/physiological manner, based on the fractional distribution parameter fd operative in PBPK. The basic partial/ordinary differential equations for four classical models are revisited/modified to yield a more complete set of extended clearance models, i.e., the Rattle, Sieve, Tube, and Jar models, which are the counterparts of the dispersion, series-compartment, parallel-tube, and well-stirred models. We demonstrate the feasibility of applying the resulting extended models to isolated perfused rat liver data for 11 compounds and an example dataset for in vitro-in vivo extrapolation of the intrinsic to the systemic clearances. Based on their feasibilities to handle such real data, these models may serve as an improved basis for applying clearance models in the future.


Assuntos
Fígado , Modelos Biológicos , Ratos , Animais , Taxa de Depuração Metabólica , Fígado/metabolismo , Cinética , Farmacocinética
5.
J Pharm Sci ; 113(1): 235-245, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918792

RESUMO

Despite decades of research efforts, pancreatic adenocarcinoma (PDAC) continues to present a formidable clinical challenge, demanding innovative therapeutic approaches. In a prior study, we reported the synergistic cytotoxic effects of gemcitabine and trabectedin on pancreatic cancer cells. To investigate potential mechanisms underlying this synergistic pharmacodynamic interaction, liquid chromatography-mass spectrometry-based proteomic analysis was performed, and a systems pharmacodynamics model (SPD) was developed to capture pancreatic cancer cell responses to gemcitabine and trabectedin, alone and combined, at the proteome level. Companion report Part I describes the proteomic workflow and drug effects on the upstream portion of the SPD model related to cell growth and migration, specifically the RTK-, integrin-, GPCR-, and calcium-signaling pathways. This report presents Part II of the SPD model. Here we describe drug effects on pathways associated with cell cycle, DNA damage response (DDR), and apoptosis, and provide insights into underlying mechanisms. Drug combination effects on protein changes in the cell cycle- and apoptosis pathways contribute to the synergistic effects observed between gemcitabine and trabectedin. The SPD model was subsequently incorporated into our previously-established cell cycle model, forming a comprehensive, multi-scale quantification platform for evaluating drug effects across multiple scales, spanning the proteomic-, cellular-, and subcellular levels. This approach provides a quantitative mechanistic framework for evaluating drug-drug interactions in combination chemotherapy, and could potentially serve as a tool to predict combinatorial efficacy and assist in target selection.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Trabectedina/farmacologia , Trabectedina/uso terapêutico , Desoxicitidina/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Proteômica , Linhagem Celular Tumoral , Ciclo Celular , Proliferação de Células , Apoptose , Reparo do DNA
6.
medRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37905152

RESUMO

Subarachnoid hemorrhage (SAH) is a devastating type of stroke, leading to high mortality and morbidity rates. Cerebral vasospasm and delayed cerebral ischemia (DCI) are common complications following SAH and contribute significantly to the poor outcomes observed in these patients. Intrathecal (IT) nicardipine delivered via an existing external ventricular drain has been shown to be correlated with reduced DCI and improved patient outcomes. The current study aims to characterize population pharmacokinetic (popPK) properties of intermittent IT nicardipine. Following informed consent, serial cerebrospinal fluid (CSF) samples were obtained from 16 SAH patients (50.4 ± 9.3 years old; 12 females) treated with IT nicardipine every 6 hours (n=8) or every 8 hours (n=8), which were subject to high-performance liquid chromatography for measurement of its CSF concentration. Our popPK analysis showed that the CSF PK of IT nicardipine in the cohort was adequately described by a two-compartment model with a lag time, with reliable parameter estimates (relative standard error < 50%). The intracranial pressure influenced both the total clearance and the central volume. Calculated PK parameters were similar between q6h and q8h dosing regimens. Despite a small cohort of SAH patients, we successfully developed a popPK model to describe the nicardipine disposition kinetics in the CSF following IT administration. These findings may help inform future clinical trials designed to examine the optimal dosing of IT nicardipine.

7.
Drug Metab Dispos ; 51(10): 1403-1418, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460222

RESUMO

Minimal physiologically based pharmacokinetic (mPBPK) models are physiologically relevant, require less information than full PBPK models, and offer flexibility in pharmacokinetics (PK). The well-stirred hepatic model (WSM) is commonly used in PBPK, whereas the more plausible dispersion model (DM) poses computational complexities. The series-compartment model (SCM) mimics the DM but is easier to operate. This work implements the SCM and mPBPK models for assessing fractional tissue distribution, oral absorption, and hepatic clearance using literature-reported blood and liver concentration-time data in rats for compounds mainly cleared by the liver. Further handled were various complexities, including nonlinear hepatic binding and metabolism, differing absorption kinetics, and sites of administration. The SCM containing one to five (n) liver subcompartments yields similar fittings and provides comparable estimates for hepatic extraction ratio (ER), prehepatic availability (Fg ), and first-order absorption rate constants (ka ). However, they produce decreased intrinsic clearances (CLint ) and liver-to-plasma partition coefficients (Kph ) with increasing n as expected. Model simulations demonstrated changes in intravenous and oral PK profiles with alterations in Kph and ka and with hepatic metabolic zonation. The permeability (PAMPA P) of the various compounds well explained the fitted fractional distribution (fd ) parameters. The SCM and mPBPK models offer advantages in distinguishing systemic, extrahepatic, and hepatic clearances. The SCM allows for incorporation of liver zonation and is useful in assessing changes in internal concentration gradients potentially masked by similar blood PK profiles. Improved assessment of intraorgan drug concentrations may offer insights into active moieties driving metabolism, biliary excretion, pharmacodynamics, and hepatic toxicity. SIGNIFICANCE STATEMENT: The minimal physiologically based pharmacokinetic model and the series-compartment model are useful in assessing oral absorption and hepatic clearance. They add flexibility in accounting for various drug- or system-specific complexities, including fractional distribution, nonlinear binding and saturable hepatic metabolism, and hepatic zonation. These models can offer improved insights into the intraorgan concentrations that reflect physiologically active moieties often driving disposition, pharmacodynamics, and toxicity.


Assuntos
Fígado , Modelos Biológicos , Ratos , Animais , Cinética , Fígado/metabolismo , Distribuição Tecidual , Permeabilidade
8.
Clin Transl Sci ; 16(9): 1667-1679, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37386717

RESUMO

Dexamethasone (DEX) given at a dose of 6 mg once-daily for 10 days is a recommended dosing regimen in patients with coronavirus disease 2019 (COVID-19) requiring oxygen therapy. We developed a population pharmacokinetic and pharmacodynamic (PopPK/PD) model of DEX anti-inflammatory effects in COVID-19 and provide simulations comparing the expected efficacy of four dosing regimens of DEX. Nonlinear mixed-effects modeling and simulations were performed using Monolix Suite version 2021R1 (Lixoft, France). Published data for DEX PK in patients with COVID-19 exhibited moderate variability with a clearance of about half that in healthy adults. No accumulation of the drug was expected even with daily oral doses of 12 mg. Indirect effect models of DEX inhibition of TNFα, IL-6, and CRP plasma concentrations were enacted and simulations performed for DEX given at 1.5, 3, 6, and 12 mg daily for 10 days. The numbers of individuals that achieved specified reductions in inflammatory biomarkers were compared among the treatment groups. The simulations indicate the need for 6 or 12 mg daily doses of DEX for 10 days for simultaneous reductions in TNFα, IL-6, and CRP. Possibly beneficial is DEX given at a dose of 12 mg compared to 6 mg. The PopPK/PD model may be useful in the assessment of other anti-inflammatory compounds as well as drug combinations in the treatment of cytokine storms.


Assuntos
COVID-19 , Fator de Necrose Tumoral alfa , Adulto , Humanos , Interleucina-6 , Tratamento Farmacológico da COVID-19 , Anti-Inflamatórios , Dexametasona/farmacocinética , Relação Dose-Resposta a Droga
9.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 668-680, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36917704

RESUMO

Minimal physiologically-based pharmacokinetic (mPBPK) models are an alternative to full physiologically-based pharmacokinetic (PBPK) models as they offer reduced complexity while maintaining the physiological interpretation of key model components. Full PBPK models have been developed for pregnancy, but a mPBPK model eases the ability to perform a "top-down" meta-analysis melding all available pharmacokinetic (PK) data in the mother and fetus. Our hybrid mPBPK model consists of mPBPK models for the mother and fetus with connection by the placenta. This model was applied to describe the rich PK data of antenatal corticosteroid betamethasone (BET) jointly with the limited data for dexamethasone (DEX) in the mother and fetus. Physiologic model parameters were obtained from the literature while drug-dependent parameters were estimated by the simultaneous fitting of all available data for DEX and BET. Maternal clearances of DEX and BET confirmed the literature values, and the expected fetal-to-maternal plasma ratios ranged from 0.3 to 0.4 for both drugs. Simulations of maternal plasma concentrations for the dosing regimens of BET and DEX recommended by the World Health Organization based on our findings revealed up to 60% lower exposures than found in nonpregnant women and offers a means of devising alternative dosing regimens. Our hybrid mPBPK model and meta-analysis approach could facilitate assessment of other classes of drugs indicated for the treatment of pregnant women.


Assuntos
Modelos Biológicos , Gestantes , Gravidez , Feminino , Humanos , Placenta , Corticosteroides/farmacocinética , Feto , Betametasona
10.
Drug Metab Dispos ; 51(5): 618-628, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36732075

RESUMO

Among the basic hepatic clearance models, the dispersion model (DM) is the most physiologically sound compared with the well-stirred model and the parallel tube model. However, its application in physiologically-based pharmacokinetic (PBPK) modeling has been limited due to computational complexities. The series compartment models (SCM) of hepatic elimination that treats the liver as a cascade of well-stirred compartments connected by hepatic blood flow exhibits some mathematical similarities to the DM but is easier to operate. This work assesses the quantitative correlation between the SCM and DM and demonstrates the operation of the SCM in PBPK with the published single-dose blood and liver concentration-time data of six flow-limited compounds. The predicted liver concentrations and the estimated intrinsic clearance (CLint ) and PBPK-operative tissue-to-plasma partition coefficient (Kp ) values were shown to depend on the number of liver sub-compartments (n) and hepatic enzyme zonation in the SCM. The CLint and Kp decreased with increasing n, with more remarkable differences for drugs with higher hepatic extraction ratios. Given the same total CLint , the SCM yields a higher Kp when the liver perivenous region exhibits a lower CLint as compared with a high CLint at this region. Overall, the SCM nicely approximates the DM in characterizing hepatic elimination and offers an alternative flexible approach as well as providing some insights regarding sequential drug concentrations in the liver. SIGNIFICANCE STATEMENT: The SCM nicely approximates the DM when applied in PBPK for characterizing hepatic elimination. The number of liver sub-compartments and hepatic enzyme zonation are influencing factors for the SCM resulting in model-dependent predictions of total/internal liver concentrations and estimates of CLint and the PBPK-operative Kp . Such model-dependency may have an impact when the SCM is used for in vitro-to-in vivo extrapolation (IVIVE) and may also be relevant for PK/PD/toxicological effects when it is the driving force for such responses.


Assuntos
Eliminação Hepatobiliar , Modelos Biológicos , Fígado/metabolismo
11.
J Pharmacol Exp Ther ; 384(3): 455-472, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36631280

RESUMO

Dexamethasone (DEX) is a potent synthetic glucocorticoid used for the treatment of variety of inflammatory and immune-mediated disorders. The RECOVERY clinical trial revealed benefits of DEX therapy in COVID-19 patients. Severe SARS-CoV-2 infection leads to an excessive inflammatory reaction commonly known as a cytokine release syndrome that is associated with activation of the toll like receptor 4 (TLR4) signaling pathway. The possible mechanism of action of DEX in the treatment of COVID-19 is related to its anti-inflammatory activity arising from inhibition of cytokine production but may be also attributed to its influence on immune cell trafficking and turnover. This study, by means of pharmacokinetic/pharmacodynamic modeling, aimed at the comprehensive quantitative assessment of DEX effects in lipopolysaccharide-challenged rats and to describe interrelations among relevant signaling molecules in this animal model of cytokine release syndrome induced by activation of TLR4 pathway. DEX was administered in a range of doses from 0.005 to 2.25 mg·kg-1 in LPS-challenged rats. Serum DEX, corticosterone (CST), tumor necrosis factor α, interleukin-6, and nitric oxide as well as lymphocyte and granulocyte counts in peripheral blood were quantified at different time points. A minimal physiologically based pharmacokinetic/pharmacodynamic (mPBPK/PD) model was proposed characterizing the time courses of plasma DEX and the investigated biomarkers. A high but not complete inhibition of production of inflammatory mediators and CST was produced in vivo by DEX. The mPBPK/PD model, upon translation to humans, may help to optimize DEX therapy in patients with diseases associated with excessive production of inflammatory mediators, such as COVID-19. SIGNIFICANCE STATEMENT: A mPBPK/PD model was developed to describe concentration-time profiles of plasma DEX, mediators of inflammation, and immune cell trafficking and turnover in LPS-challenged rats. Interrelations among DEX and relevant biomarkers were reflected in the mechanistic model structure. The mPBPK/PD model enabled quantitative assessment of in vivo potency of DEX and, upon translation to humans, may help optimize dosing regimens of DEX for the treatment of immune-related conditions associated with exaggerated immune response.


Assuntos
COVID-19 , Lipopolissacarídeos , Humanos , Ratos , Animais , Dexametasona/farmacologia , Receptor 4 Toll-Like , Síndrome da Liberação de Citocina/tratamento farmacológico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Imunidade , Mediadores da Inflamação
12.
AAPS J ; 25(1): 19, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702940

RESUMO

In minimal physiologically based pharmacokinetic (mPBPK) models, physiological (e.g., cardiac output) and anatomical (e.g., blood/tissue volumes) variables are utilized in the domain of differential equations (DEs) for mechanistic understanding of the plasma concentration-time relationships [Formula: see text]. Although fundamental biopharmaceutical variables in terms of distribution (e.g., [Formula: see text] and [Formula: see text]) and elimination kinetics (e.g., [Formula: see text]) in mPBPK provide greater insights in comparison to classical compartment models, an absence of kinetic elucidation of slopes and intercepts in light of such DE model parameters hinders more intuitive appreciation of [Formula: see text]. Therefore, this study seeks the tangible physical meanings of slopes and intercepts of the plasma concentration-time relationships in one- and two-tissue mPBPK models (i.e., m2CM and m3CM), with respect to time parameters that are readily understandable in PK analyses, i.e., the mean residence ([Formula: see text]) and transit ([Formula: see text]) times. Utilizing the explicit equations (EEs) for the slopes, intercepts, and areas of each exponential phase in the m2CM and m3CM, we theoretically and numerically examined the limiting/boundary conditions of such kinetic properties, based on the ratio of the longest tissue [Formula: see text] to the [Formula: see text] in the body (i.e., [Formula: see text]) that is useful for dissecting complex PBPK systems. The kinetic contribution of the area of each exponential phase to the total drug exposure was assessed to identify the elimination phase between the terminal and non-terminal phases of the [Formula: see text] in the m2CM and m3CM. This assessment provides improved understanding of the complexities inherent in all PBPK profiles and models.


Assuntos
Volume Sanguíneo , Nonoxinol , Cinética
13.
Drug Metab Dispos ; 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195337

RESUMO

The primary models used in pharmacokinetics (PK) to assess hepatic clearance (CLh ) are the well-stirred (WSM), parallel tube (PTM), and dispersion model (DM) that differ in their internal flow patterns and assumed unbound liver concentrations. Physiologically-Based Pharmacokinetic (PBPK) models require a hepatic intrinsic clearance (CLint ) and tissue-to-plasma partition coefficient (Kp ). Given measured systemic and liver concentration-time profiles, these hepatic models perform similarly but yield model-specific CLint and Kp estimates. This work provides mathematical relationships for the three basic hepatic models and assesses their corresponding PBPK-relevant Kp values with literature-reported single-dose blood and liver concentration-time data of 14 compounds. Model fittings were performed with an open-loop approach where the CLh and extraction ratio (ER) were first estimated from fitting the blood data yielding CLint values for the three hepatic models. The pre-fitted blood data served as forcing input functions to obtain PBPK-operative Kp estimates that were compared with those obtained by the tissue/plasma area ratio (AR), Chen & Gross (C&G) and published in silico methods. The CLint and Kp values for the hepatic models increased with the ER and both showed a rank order being WSM > DM > PTM. Drugs with low ER showed no differences as expected. With model-specific CLint and Kp values, all hepatic models predict the same steady-state Kp (Kp ss ) that is comparable to those from the AR and C&G methods and reported by direct measurement. All in silico methods performed poorly for most compounds. Hepatic model selection requires cautious application and interpretation in PBPK modeling. Significance Statement The three hepatic models generate different single-dose (non-steady-state) values of CLint and Kp in PBPK models especially for drugs with high ER; however, all Kp ss values expected from constant rate infusion studies were the same. These findings are relevant when using these models for IVIVE where a model-dependent CLint is used to correct measured tissue concentrations for depletion by metabolism. This model-dependency may also have an impact when assessing the PK/pharmacodynamic relationships when effects relate to assumed hepatic concentrations.

14.
Mol Cell Proteomics ; 21(10): 100409, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084875

RESUMO

Pancreatic adenocarcinoma (PDAC) is highly refractory to treatment. Standard-of-care gemcitabine (Gem) provides only modest survival benefits, and development of Gem resistance (GemR) compromises its efficacy. Highly GemR clones of Gem-sensitive MIAPaCa-2 cells were developed to investigate the molecular mechanisms of GemR and implemented global quantitative differential proteomics analysis with a comprehensive, reproducible ion-current-based MS1 workflow to quantify ∼6000 proteins in all samples. In GemR clone MIA-GR8, cellular metabolism, proliferation, migration, and 'drug response' mechanisms were the predominant biological processes altered, consistent with cell phenotypic alterations in cell cycle and motility. S100 calcium binding protein A4 was the most downregulated protein, as were proteins associated with glycolytic and oxidative energy production. Both responses would reduce tumor proliferation. Upregulation of mesenchymal markers was prominent, and cellular invasiveness increased. Key enzymes in Gem metabolism pathways were altered such that intracellular utilization of Gem would decrease. Ribonucleoside-diphosphate reductase large subunit was the most elevated Gem metabolizing protein, supporting its critical role in GemR. Lower Ribonucleoside-diphosphate reductase large subunit expression is associated with better clinical outcomes in PDAC, and its downregulation paralleled reduced MIAPaCa-2 proliferation and migration and increased Gem sensitivity. Temporal protein-level Gem responses of MIAPaCa-2 versus GemR cell lines (intrinsically GemR PANC-1 and acquired GemR MIA-GR8) implicate adaptive changes in cellular response systems for cell proliferation and drug transport and metabolism, which reduce cytotoxic Gem metabolites, in DNA repair, and additional responses, as key contributors to the complexity of GemR in PDAC. These findings additionally suggest targetable therapeutic vulnerabilities for GemR PDAC patients.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Ribonucleosídeos , Humanos , Linhagem Celular Tumoral , Difosfatos/metabolismo , Difosfatos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/metabolismo , Proteômica , Ribonucleosídeos/uso terapêutico , Proteína A4 de Ligação a Cálcio da Família S100 , Gencitabina , Neoplasias Pancreáticas
15.
AAPS J ; 24(5): 96, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042121

RESUMO

In pharmacokinetic (PK) analyses, the biological half-life T1/2 is usually determined in the terminal phase after drug administration, which is readily calculated from the relationship T1/2 = ln2/λz where λz is the terminal-phase slope obtainable from non-compartmental analysis (NCA). Since kinetic understanding of λz has been limited to the theory of a one-compartment model, this study seeks kinetic determinants of λz in more complex plasma concentration-time profiles. We utilized physiologically based pharmacokinetic (PBPK) systems that are consistent with the assumptions of NCA (e.g., linear PK and elimination occurring from plasma) to interrelate λz and disposition kinetic parameters of PBPK models. In a mammillary form of PBPK models, the two boundary conditions of λz are the inverses of the mean residence time in the body (1/MRTB = CL/VSS) and the mean transit time through the kinetically largest tissue (1/MTTmax = QTfdRb/VTKp). Importantly, the limiting conditions of λz between 1/MRTB and 1/MTTmax are dependent on a simple product MRTBλz (Pdet) and a simple ratio MTTmax/MRTB (Kdet), leading to introduction of the unitless product-ratio plot for determination of the limiting condition of λz in linear PK. We found that the MRTBλz value of 0.5 serves as a practical threshold determining whether λz is more closely associated with 1/MRTB or 1/MTTmax. The current theory was applied for assessment of the terminal slope λz for observed PK data of various compounds in man and rat.


Assuntos
Modelos Biológicos , Animais , Humanos , Ratos , Cinética , Preparações Farmacêuticas
16.
J Pharmacokinet Pharmacodyn ; 49(5): 493-510, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040645

RESUMO

Therapeutic responses of most drugs are initiated by the rate and degree of binding to their receptors or targets. The law of mass action describes the rate of drug-receptor complex association (kon) and dissociation (koff) where the ratio koff/kon is the equilibrium dissociation constant (Kd). Drugs with slow reversible binding (SRB) often demonstrate delayed onset and prolonged pharmacodynamic effects. This report reviews evidence for drugs with SRB features, describes previous pharmacokinetic/pharmacodynamic (PK/PD) modeling efforts of several such drugs, provides a tutorial on the mathematics and properties of SRB models, demonstrates applications of SRB models to additional compounds, and compares PK/PD fittings of SRB with other mechanistic models. We identified and summarized 52 drugs with in vitro-confirmed SRB from a PubMed literature search. Simulations with a SRB model and observed PK/PD profiles showed delayed and prolonged responses and that increasing doses/kon or decreasing koff led to greater expected maximum effects and a longer duration of effects. Recession slopes for return of responses to baseline after single doses were nearly linear with an inflection point that approaches a limiting value at larger doses. The SRB model newly captured literature data for the antihypertensive effects of candesartan and antiallergic effects of noberastine. Their PD profiles could also be fitted with indirect response and biophase models with minimal differences. The applicability of SRB models is probably commonplace, but underappreciated, owing to the need for in vitro confirmation of binding kinetics and the similarity of PK/PD profiles to models with other mechanistic determinants.


Assuntos
Antialérgicos , Anti-Hipertensivos , Cinética , Modelos Biológicos
17.
Pharm Res ; 39(3): 463-479, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35288804

RESUMO

PURPOSE: The tissue-to-plasma partition coefficient (Kp) describes the extent of tissue distribution in physiologically-based pharmacokinetic (PBPK) models. Constant-rate infusion studies are common for experimental determination of the steady-state Kp,ss, while the tissue-plasma concentration ratio (CT/Cp) in the terminal phase after intravenous doses is often utilized. The Chen and Gross (C&G) method converts a terminal slope CT/Cp to Kp,ss based on assumptions of perfusion-limited distribution in tissue-plasma equilibration. However, considering blood flow (QT) and apparent tissue permeability (fupPSin) in the rate of tissue distribution, this report extends the C&G method by utilizing a fractional distribution parameter (fd). METHODS: Relevant PBPK equations for non-eliminating and eliminating organs along with lung and liver were derived for the conversion of CT/Cp values to Kp,ss. The relationships were demonstrated in rats with measured CT/Cp and Kp,ss values and the model-dependent fd for 8 compounds with a range of permeability coefficients. Several methods of assessing Kp were compared. RESULTS: Utilizing fd in an extended C&G method, our estimations of Kp,ss from CT/Cp were improved, particularly for lower permeability compounds. However, four in silico methods for estimating Kp performed poorly across tissues in comparison with measured Kp values. Mathematical relationships between Kp and Kp,ss that are generally applicable for eliminating organs with tissue permeability limitations necessitates inclusion of an extraction ratio (ER) and fd. CONCLUSION: Since many different types/sources of Kp are present in the literature and used in PBPK models, these perspectives and equations should provide better insights in measuring and interpreting Kp values in PBPK.


Assuntos
Modelos Biológicos , Plasma , Animais , Fígado , Ratos , Distribuição Tecidual
18.
J Pharmacol Exp Ther ; 381(2): 151-163, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35221290

RESUMO

Autoimmune hepatitis (AIH) is a life-threatening disorder currently treated with nonspecific immunosuppressive drugs. It is postulated that phosphodiesterase (PDE) inhibitors, as agents exerting anti-inflammatory and immunomodulatory activities, may constitute a possible treatment of autoimmune disorders. This study develops a pharmacokinetic/pharmacodynamic (PK/PD) model to assess the effects of PDE-selective inhibitors, namely, cilostazol (PDE3), rolipram (PDE4), and BRL-50481 (PDE7), in a mouse model of AIH. The pharmacokinetics of the PDE inhibitors (PDEi) were assessed in male BALB/c mice after intraperitoneal administration. In pharmacodynamic studies, mice received PDEi and AIH was induced in these animals by intravenous injection of concanavalin A (ConA). Serum drug concentrations, tumor necrosis factor α (TNFα), interleukin 17 (IL-17), and aminotransferase activities were quantified. The PK/PD analysis was performed using ADAPT5 software. The PK/PD model assumes inhibition of cAMP hydrolysis in T cells by PDEi, ConA-triggered formation of TNFα and IL-17, suppression of TNFα and IL-17 production by cAMP, and stimulatory effects of TNFα and IL-17 on the hepatic release of aminotransferases. Selective blockage of PDE4 leads to the highest inhibition of cAMP degradation in T cells and amelioration of disease outcomes. However, inhibition of both PDE3 and PDE7 also contribute to this effect. The proposed PK/PD model may be used to assess and predict the activities of novel PDEi and their combinations in ConA-induced hepatitis. A balanced suppression of different types of PDE appears to be a promising treatment option for AIH; however, this hypothesis warrants testing in humans based on translation of the PK/PD model into clinical settings. SIGNIFICANCE STATEMENT: A novel PK/PD model of PDE inhibitor effects in mice with ConA-induced autoimmune hepatitis was developed involving a mechanistic component describing changes in cAMP concentrations in mouse T cells. According to model predictions, inhibition of PDE4 in T cells causes the highest cAMP elevation in T cells, but suppression of PDE3 and PDE7 also contribute to this effect. A balanced inhibition of PDE3, PDE4, and PDE7 appears to be a promising treatment strategy for AIH.


Assuntos
Hepatite Autoimune , Inibidores de Fosfodiesterase , 3',5'-AMP Cíclico Fosfodiesterases , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Modelos Animais de Doenças , Hepatite Autoimune/tratamento farmacológico , Interleucina-17 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Inibidores da Fosfodiesterase 3 , Inibidores de Fosfodiesterase/farmacologia , Fator de Necrose Tumoral alfa
19.
Clin Transl Sci ; 15(3): 709-720, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34811931

RESUMO

Factor XII (FXII) is a serine protease involved in multiple cascades, including the kallikrein-kinin system. It may play a role in diseases in which the downstream cascades are dysregulated, such as hereditary angioedema. Garadacimab (CSL312) is a first-in-class, fully human, monoclonal antibody targeting activated FXII (FXIIa). We describe how translational pharmacokinetic (PK) and pharmacodynamic (PD) modeling enabled dose selection for the phase I, first-in-human trial of garadacimab. The PK/PD data used for modeling were derived from preclinical PK/PD and safety studies. Garadacimab plasma concentrations rose with increasing dose, and clear dose-related PD effects were observed (e.g., a mechanism-based prolongation of activated partial thromboplastin time). The PK/PD profile from cynomolgus monkeys was used to generate minimal physiologically-based pharmacokinetic (mPBPK) models with target-mediated drug disposition (TMDD) for data prediction in cynomolgus monkeys. These models were later adapted for prediction of human data to establish dose selection. Based on the final mPBPK model with TMDD and assuming a weight of 70 kg for an adult human, a minimal inhibition (<10%) of FXIIa with a starting dose of 0.1 mg/kg garadacimab and a near maximal inhibition (>95%) at 10 mg/kg garadacimab were predicted. The phase I study is complete, and data on exposure profiles and inhibition of FXIIa-mediated kallikrein activity observed in the trial support and validate these simulations. This emphasizes the utility and relevance of translational modeling and simulation in drug development.


Assuntos
Angioedemas Hereditários , Fator XIIa , Animais , Anticorpos Monoclonais/farmacocinética , Simulação por Computador , Humanos , Macaca fascicularis
20.
AAPS J ; 24(1): 5, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853928

RESUMO

This report reviews concepts related to operation of the classic parallel-tube model (PTM) for hepatic disposition and examines two recent proposals of a newly derived equation to describe hepatic clearance (CLH). It is demonstrated that the proposed equation is identical to a re-arrangement of an earlier relationship from Pang and Rowland and provides a means of calculation of intrinsic clearance (CLint,PTM) rather than CLH as posed. We further demonstrate how classic hepatic clearance models with an assumed CLint, while subject to numerous limitations, remain highly useful and necessary in both traditional pharmacokinetics (PK) and physiologically based pharmacokinetic (PBPK) modeling.


Assuntos
Fígado , Modelos Biológicos , Cinética , Fígado/metabolismo , Taxa de Depuração Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...