Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1052575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760993

RESUMO

Foxtail millet (Setaria italica (L.) P. Beauv.) is highly valued for nutritional traits, stress tolerance and sustainability in resource-poor dryland agriculture. However, the low productivity of this crop in semi-arid regions of Southern India, is further threatened by climate stress. Landraces are valuable genetic resources, regionally adapted in form of novel alleles that are responsible for cope up the adverse conditions used by local farmers. In recent years, there is an erosion of genetic diversity. We have hypothesized that plant genetic resources collected from the semi-arid climatic zone would serve as a source of novel alleles for the development of climate resilience foxtail millet lines with enhanced yield. Keeping in view, there is an urgent need for conservation of genetic resources. To explore the genetic diversity, to identify superior genotypes and novel alleles, we collected a heterogeneous mixture of foxtail millet landraces from farmer fields. In an extensive multi-year study, we developed twenty genetically fixed foxtail millet landraces by single seed descent method. These landraces characterized along with four released cultivars with agro-morphological, physiological, yield and yield-related traits assessed genetic diversity and population structure. The landraces showed significant diversity in all the studied traits. We identified landraces S3G5, Red, Black and S1C1 that showed outstanding grain yield with earlier flowering, and maturity as compared to released cultivars. Diversity analysis using 67 simple sequence repeat microsatellite and other markers detected 127 alleles including 11 rare alleles, averaging 1.89 alleles per locus, expected heterozygosity of 0.26 and an average polymorphism information content of 0.23, collectively indicating a moderate genetic diversity in the landrace populations. Euclidean Ward's clustering, based on the molecular markers, principal coordinate analysis and structure analysis concordantly distinguished the genotypes into two to three sub-populations. A significant phenotypic and genotypic diversity observed in the landraces indicates a diverse gene pool that can be utilized for sustainable foxtail millet crop improvement.

2.
Bioengineering (Basel) ; 9(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290557

RESUMO

Rhizoctonia solani is a soil-borne fungus causing sheath blight disease in cereal crops including rice. Genetic resistance to sheath blight disease in cereal crops is not well understood in most of the host(s). Aside from this, a comparative study on the different hosts at the biochemical and proteomic level upon R. solani infection was not reported earlier. Here, we performed proteomic based analysis and studied defense pathways among cultivated rice (cv. Pusa Basmati-1), wild rice accession (Oryza grandiglumis), and barley (cv. NDB-1445) after inoculation with R. solani. Increased levels of phenol, peroxidase, and ß-1, 3-glucanase were observed in infected tissue as compared to the control in all of the hosts. Wild rice accession O. grandiglumis showed a higher level of biochemical signals than barley cv. NDB 1445 and cultivated rice cv. Pusa Basmati-1. Using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS), differently expressed proteins were also studied in control and after inoculation with R. solani. Wild rice accession O. grandiglumis induced a cysteine protease inhibitor and zinc finger proteins, which have defense functions and resistance against fungal pathogens. On the other hand, barley cv. NDB-1445 and cultivated rice cv. Pusa Basmati-1 mainly induce energy metabolism-related proteins/signals after inoculation with R. solani in comparison to wild rice accession O. grandiglumis. The present comprehensive study of R. solani interaction using three hosts, namely, Pusa Basmati-1 (cultivated rice), O. grandiglumis (wild rice), and NDB-1445 (barley) would interpret wider possibilities in the dissection of the protein(s) induced during the infection process. These proteins may further be correlated to the gene(s) and other related molecular tools that will help for the marker-assisted breeding and/or gene editing for this distressing disease among the major cereal crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...