Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37379895

RESUMO

Dopamine type 2 receptors (D2Rs) constitute the main molecular target in the pharmacotherapy of schizophrenia. However, the second and third generation of antipsychotics comprises multi-target ligands, also binding serotonin type 3 receptors (5-HT3Rs) and other receptor classes as well. Here, we examined two experimental compounds (marked compound K1697 and K1700) from the group of 1,4-di-substituted aromatic piperazines, previously described in the study of Juza et al., 2021, and compared them with the chosen reference antipsychotic, aripiprazole. Their efficacy against schizophrenia-like behavior was tested in two different models of psychosis in the rat, induced by acute administration of either amphetamine (1.5 mg/kg) or dizocilpine (0.1 mg/kg), reflecting the dopaminergic and glutamatergic hypotheses of schizophrenia. The two models exhibited broadly similar behavioral manifestations: hyperlocomotion, disrupted social behavior and impaired prepulse inhibition of the startle response. However, they differed in their treatment responses as hyperlocomotion and prepulse inhibition deficit in the dizocilpine model were resistant to antipsychotic treatment, unlike the amphetamine model. One of the experimental compounds, K1700, ameliorated all the observed schizophrenia-like behaviors in the amphetamine model with an efficacy comparable to or greater than aripiprazole. Whereas social impairments caused by dizocilpine were strongly suppressed by aripiprazole, K1700 was less efficient. Taken together, K1700 showed antipsychotic properties comparable to those of aripiprazole, although the efficacy of the two drugs differed in specific domains of behavior and was also model-dependent. Our present results highlight the differences in these two schizophrenia models and their responsiveness to pharmacotherapy, and confirm compound K1700 as a promising drug candidate.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Quinolonas , Ratos , Animais , Aripiprazol , Antipsicóticos/uso terapêutico , Dopamina/metabolismo , Maleato de Dizocilpina , Transtornos Psicóticos/tratamento farmacológico , Anfetamina , Receptores de Serotonina , Relação Dose-Resposta a Droga
2.
Med Res Rev ; 43(1): 55-211, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36111795

RESUMO

Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.


Assuntos
Dopamina , Receptores de Dopamina D2 , Humanos , Dopamina/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Ligantes , Receptores Acoplados a Proteínas G
3.
Eur J Med Chem ; 232: 114193, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35176563

RESUMO

Schizophrenia is a serious mental disorder without a fully understood pathomechanism, but which involves dysregulation of neurotransmitters and their receptors. The best option for the management of schizophrenia comprises so-called multi-target ligands, similar to the third generation of neuroleptics. Dopamine type 2 receptors (D2Rs) are the main target in the treatment of schizophrenia, in particular for mitigation of the positive symptoms. Due to the high expression of 5-hydroxytryptamine type 3 receptors (5-HT3Rs) in human brain areas responsible for emotional behavior, motivation, and cognitive function, 5-HT3Rs represent a potential target for modulating the cognitive and negative symptoms of schizophrenia. Here we present the design, synthesis, and both in vitro and in vivo biological evaluation of 1,4-disubstituted aromatic piperazines. Screening of in vitro properties revealed the two most promising drug candidates (21 and 24) which were found to be potent D2Rs and moderate 5-HT3R antagonists, and which were forwarded to in vivo studies in Wistar rats. Considering toxicity, administration of the maximal feasible dose of 21 (2 mg/kg) did not produce any side effects. By contrast, the higher solubility of 24 led to revelation of mild and temporary side effects at the dose of 20 mg/kg. Importantly, both 21 and 24 showed facile crossing of the blood-brain barrier, even exerting higher levels in the brain in comparison to plasma. In a behavioral study using the acute amphetamine model of psychosis, we showed that compound 24 ameliorated both positive and negative effects of amphetamine including hyperlocomotion, social impairments, and disruption of prepulse inhibition. The effect of the highest dose (10 mg/kg) was comparable to the effect of the reference dose of aripiprazole (1 mg/kg).


Assuntos
Antipsicóticos , Esquizofrenia , Animais , Antipsicóticos/efeitos adversos , Piperazinas/farmacologia , Ratos , Ratos Wistar , Receptores de Serotonina , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
4.
Biomolecules ; 11(9)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34572475

RESUMO

In this pilot study, a series of new 3,4-dihydroquinolin-2(1H)-one derivatives as potential dopamine receptor D2 (D2R) modulators were synthesized and evaluated in vitro. The preliminary structure-activity relationship disclosed that compound 5e exhibited the highest D2R affinity among the newly synthesized compounds. In addition, 5e showed a very low cytotoxic profile and a high probability to cross the blood-brain barrier, which is important considering the observed affinity. However, molecular modelling simulation revealed completely different binding mode of 5e compared to USC-D301, which might be the culprit of the reduced affinity of 5e toward D2R in comparison with USC-D301.


Assuntos
Aripiprazol/síntese química , Quinolonas/síntese química , Receptores de Dopamina D2/metabolismo , Animais , Aripiprazol/farmacologia , Sítios de Ligação , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Células CHO , Morte Celular , Sistema Nervoso Central/efeitos dos fármacos , Cricetulus , Desenho de Fármacos , Ligantes , Modelos Moleculares , Quinolonas/química , Quinolonas/farmacologia , Receptores de Dopamina D2/química
5.
Med Res Rev ; 40(5): 1593-1678, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32115745

RESUMO

Serotonin (5-hydroxytryptophan [5-HT]) is a biologically active amine expressed in platelets, in gastrointestinal (GI) cells and, to a lesser extent, in the central nervous system (CNS). This biogenic compound acts through the activation of seven 5-HT receptors (5-HT1-7 Rs). The 5-HT3 R is a ligand-gated ion channel belonging to the Cys-loop receptor family. There is a wide variety of 5-HT3 R modulators, but only receptor antagonists (known as setrons) have been used clinically for chemotherapy-induced nausea and vomiting and irritable bowel syndrome treatment. However, since the discovery of the setrons in the mid-1980s, a large number of studies have been published exploring new potential applications due their potency in the CNS and mild side effects. The results of these studies have revealed new potential applications, including the treatment of neuropsychiatric disorders such as schizophrenia, depression, anxiety, and drug abuse. In this review, we provide information related to therapeutic potential of 5-HT3 R antagonists on GI and neuropsychiatric disorders. The major attention is paid to the structure, function, and pharmacology of novel 5-HT3 R modulators developed over the past 10 years.


Assuntos
Gastroenteropatias , Serotonina , Gastroenteropatias/tratamento farmacológico , Humanos , Náusea , Receptores 5-HT3 de Serotonina , Antagonistas da Serotonina/farmacologia
6.
Curr Med Chem ; 26(30): 5625-5648, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29768996

RESUMO

Alzheimer's Disease (AD) is a multifactorial progressive neurodegenerative disorder characterized by memory loss, disorientation, and gradual deterioration of intellectual capacity. Its etiology has not been elucidated yet. To date, only one therapeutic approach has been approved for the treatment of AD. The pharmacotherapy of AD has relied on noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist - memantine, and acetylcholinesterase (AChE) inhibitors (AChEIs) - tacrine, donepezil, rivastigmine and galantamine. Donepezil was able to ameliorate the symptoms related to AD mainly via AChE, but also through reduction of ß-amyloid burden. This review presents the overview of donepezilrelated compounds as potential anti-AD drugs developed on the basis of cholinergic hypothesis to act as solely AChE and butyrylcholinesterase (BChE) inhibitors.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Donepezila/farmacologia , Donepezila/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Animais , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Donepezila/química , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...