Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453745

RESUMO

Cancer cells utilize glucose as their primary energy source. The aggressive nature of cancer cells is therefore enhanced in hyperglycemic conditions. This study has been adopted to investigate the therapeutic potential of melatonin against such aggressive proliferation of AGS cells-a human gastric cancer cell line, under hyperglycemic conditions. AGS cells were incubated with high glucose-containing media, and the effects of melatonin have been evaluated, therein. Cell proliferation, ROS generation, flow-cytometric analysis for cell cycle and apoptosis, wound healing, immunoblotting, zymography, reverse zymography assays, in-silico analysis, and kinase activity assays were performed to evaluate the effects of melatonin. We observed that melatonin inhibited the hyperglycemia-induced cell proliferation in a dose-dependent manner. It further altered the expression and activity of MMP-9 and TIMP-1. Moreover, melatonin inhibited AGS cell proliferation by arresting AGS cells in the G0/G1 phase after binding in the ATP binding site of CDK-2, thereby inhibiting its kinase activity. In association, a significant decrease in the expression of cyclin D1, cyclin E, CDK-4, and CDK-2 were observed. In conclusion, these findings suggest that melatonin has anti-gastric cancer potential. Melatonin could therefore be included in future drug designs for gastric cancer-hyperglycemia co-morbidity treatment.

2.
Nat Prod Res ; : 1-8, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450037

RESUMO

Swietenia macrophylla King in Hook (SM) is known to have several medicinal properties. Chloroform extracts of SM seeds (SMCE) as well as two isolated limonoids swietenine (1) and swietenolide (2) showed significant in vitro anti-CRC activity in human colon carcinoma (HCT116) cell line. 2 (IC50 = 5.6 µM) was found to be two times more potent than 1 (IC50 = 10 µM). Both compounds showed anti-CRC activity through inhibition of the Mouse Double Minute 2 homolog (MDM2) of the MDM2-p53 pathway. The Selectivity Index (S.I.) of isolated compounds 1 and 2 for cancer cells were about 6.6 and 12.8 fold respectively which was significantly better than the S.I. of the extract (S.I. ∼1.5).

3.
J Biomol Struct Dyn ; 41(23): 13993-14002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970872

RESUMO

There is currently no drug available to treat mosquito-borne dengue. The C-terminal RNA-dependent RNA polymerase (RdRp) domain in the non-structural type 5 (NS5) protein of the dengue virus (DENV) is essential for viral RNA synthesis and replication, and therefore, it is an attractive target for the anti-dengue drug development. We report herein the discovery and validation of two novel non-nucleoside classes of small molecules as DENV RdRp inhibitors. Firstly, using the refined X-ray structure of the DENV NS5 RdRp domain (PDB-ID: 4V0R), we conducted docking, binding free-energy studies, and short-scale molecular dynamics simulation to investigate the binding sites of known small molecules that led to the optimized protein-ligand complex. Subsequently, protein structure-based screening of a commercial database (∼500,000 synthetic compounds), pre-filtered for the drug-likeness, led to the top-ranked 171 molecules, which was then subjected to structural diversity analysis and clustering. This process led to six structurally distinct and best-scored compounds that were procured from the commercial vendor, and then subjected to the in vitro testing in the MTT and dengue infection assays. It revealed two unique and structurally unique compounds, KKR-D-02 and KKR-D-03, exhibiting 84 and 81% reductions, respectively, in DENV copy number in repeated assays in comparison to the virus-infected cell controls. These active compounds represent novel scaffolds for further structure-based discovery of novel candidate molecules for the intervention of dengue.Communicated by Ramaswamy H. Sarma.


Assuntos
Vírus da Dengue , Dengue , Animais , Vírus da Dengue/química , Sítios de Ligação , Dengue/tratamento farmacológico , Replicação Viral , RNA Polimerase Dependente de RNA/química , Antivirais/química , Proteínas não Estruturais Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...