Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993322

RESUMO

Sigma factors bind and direct the RNA polymerase core to specific promoter sequences and alternative sigma factors direct transcription of different regulons of genes. Here, we study the pBS32 plasmid-encoded sigma factor SigN of Bacillus subtilis to determine how it contributes to DNA damage-induced cell death. We find that SigN causes cell death when expressed at high level and does so in the absence of its regulon suggesting it is intrinsically toxic. One way toxicity was relieved was by curing the pBS32 plasmid, which eliminated a positive feedback loop that lead to SigN hyper-accumulation. Another way toxicity was relieved was through mutating the chromosomally-encoded transcriptional repressor protein AbrB and derepressing a potent antisense transcript that antagonized SigN expression. We note that SigN exhibits a relatively high affinity for the RNA polymerase core, efficiently competing with the vegetative sigma factor SigA, suggesting that toxicity was due to the competitive inhibition of one or more essential transcripts. Why B. subtilis encodes a potentially toxic sigma factor is unclear but SigN may be related to phage-like genes also encoded on pBS32. SIGNIFICANCE: Alternative sigma factors activate entire regulons of genes to improve viability in response to environmental stimuli. The pBS32 plasmid-encoded SigN of Bacillus subtilis is activated by the DNA damage response and leads to cellular demise. Here we find that SigN impairs viability by hyper-accumulating and outcompeting the vegetative sigma factor for the RNA polymerase core. Why B. subtilis retains a plasmid with a deleterious alternative sigma factor is unknown.

2.
Nucleic Acids Res ; 49(12): 7088-7102, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34157109

RESUMO

RNA turnover is essential in all domains of life. The endonuclease RNase Y (rny) is one of the key components involved in RNA metabolism of the model organism Bacillus subtilis. Essentiality of RNase Y has been a matter of discussion, since deletion of the rny gene is possible, but leads to severe phenotypic effects. In this work, we demonstrate that the rny mutant strain rapidly evolves suppressor mutations to at least partially alleviate these defects. All suppressor mutants had acquired a duplication of an about 60 kb long genomic region encompassing genes for all three core subunits of the RNA polymerase-α, ß, ß'. When the duplication of the RNA polymerase genes was prevented by relocation of the rpoA gene in the B. subtilis genome, all suppressor mutants carried distinct single point mutations in evolutionary conserved regions of genes coding either for the ß or ß' subunits of the RNA polymerase that were not tolerated by wild type bacteria. In vitro transcription assays with the mutated polymerase variants showed a severe decrease in transcription efficiency. Altogether, our results suggest a tight cooperation between RNase Y and the RNA polymerase to establish an optimal RNA homeostasis in B. subtilis cells.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Endorribonucleases/fisiologia , RNA Mensageiro/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Endorribonucleases/genética , Evolução Molecular , Deleção de Genes , Duplicação Gênica , Genes Bacterianos , Homeostase , Mutação , Supressão Genética , Transcrição Gênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...