Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 152(24): 245101, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32610976

RESUMO

Performing quasielastic neutron scattering measurements and analyzing both elastic and quasielasic contributions, we study protein and water dynamics of hydrated elastin. At low temperatures, hydration-independent methyl group rotation dominates the findings. It is characterized by a Gaussian distribution of activation energies centered at about Em = 0.17 eV. At ∼195 K, coupled protein-water motion sets in. The hydration water shows diffusive motion, which is described by a Gaussian distribution of activation energies with Em = 0.57 eV. This Arrhenius behavior of water diffusion is consistent with previous results for water reorientation, but at variance with a fragile-to-strong crossover at ∼225 K. The hydration-related elastin backbone motion is localized and can be attributed to the cage rattling motion. We speculate that its onset at ∼195 K is related to a secondary glass transition, which occurs when a ß relaxation of the protein has a correlation time of τß âˆ¼ 100 s. Moreover, we show that its temperature-dependent amplitude has a crossover at the regular glass transition Tg = 320 K of hydrated elastin, where the α relaxation of the protein obeys τα ∼ 100 s. By contrast, we do not observe a protein dynamical transition when water dynamics enters the experimental time window at ∼240 K.


Assuntos
Elastina/química , Água/química , Temperatura Baixa , Temperatura Alta , Difração de Nêutrons , Transição de Fase , Temperatura de Transição
2.
Biophys J ; 115(12): 2348-2367, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30527335

RESUMO

Backbone (15N) NMR relaxation is one of the main sources of information on dynamics of disordered proteins. Yet, we do not know very well what drives 15N relaxation in such systems, i.e., how different forms of motion contribute to the measurable relaxation rates. To address this problem, we have investigated, both experimentally and via molecular dynamics simulations, the dynamics of a 26-residue peptide imitating the N-terminal portion of the histone protein H4. One part of the peptide was found to be fully flexible, whereas the other part features some transient structure (a hairpin stabilized by hydrogen bonds). The following motional modes proved relevant for 15N relaxation. 1) Sub-picosecond librations attenuate relaxation rates according to S2 ∼0.85-0.90. 2) Axial peptide-plane fluctuations along a stretch of the peptide chain contribute to relaxation-active dynamics on a fast timescale (from tens to hundreds of picoseconds). 3) φ/ψ backbone jumps contribute to relaxation-active dynamics on both fast (from tens to hundreds of picoseconds) and slow (from hundreds of picoseconds to a nanosecond) timescales. The major contribution is from polyproline II (PPII) ↔ ß transitions in the Ramachandran space; in the case of glycine residues, the major contribution is from PPII ↔ (ß) ↔ rPPII transitions, in which rPPII is the mirror-image (right-handed) version of the PPII geometry, whereas ß geometry plays the role of an intermediate state. 4) Reorientational motion of certain (sufficiently long-lived) elements of transient structure, i.e., rotational tumbling, contributes to slow relaxation-active dynamics on ∼1-ns timescale (however, it is difficult to isolate this contribution). In conclusion, recent advances in the area of force-field development have made it possible to obtain viable Molecular Dynamics models of protein disorder. After careful validation against the experimental relaxation data, these models can provide a valuable insight into mechanistic origins of spin relaxation in disordered peptides and proteins.


Assuntos
Histonas/química , Histonas/metabolismo , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Cinética , Movimento , Temperatura , Água/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-24730877

RESUMO

Using a combination of H2 nuclear magnetic resonance (NMR) methods, we study internal rotational dynamics of the perdeuterated protein C-phycocyanin (CPC) in dry and hydrated states over broad temperature and dynamic ranges with high angular resolution. Separating H2 NMR signals from methyl deuterons, we show that basically all backbone deuterons exhibit highly restricted motion occurring on time scales faster than microseconds. The amplitude of this motion increases when a hydration shell exists, while it decreases upon cooling and vanishes near 175 K. We conclude that the vanishing of the highly restricted motion marks a dynamical transition, which is independent of the time window and of a fundamental importance. This conclusion is supported by results from experimental and computational studies of the proteins myoglobin and elastin. In particular, we argue based on findings in molecular dynamics simulations that the behavior of the highly restricted motion of proteins at the dynamical transition resembles that of a characteristic secondary relaxation of liquids at the glass transition, namely the nearly constant loss. Furthermore, H2 NMR studies on perdeuterated CPC reveal that, in addition to highly restricted motion, small fractions of backbone segments exhibit weakly restricted dynamics when temperature and hydration are sufficiently high.


Assuntos
Deutério/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Simulação de Dinâmica Molecular , Ficocianina/química , Ficocianina/ultraestrutura , Cinética , Transição de Fase , Conformação Proteica , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA