RESUMO
This study analyses and compares the genetic signatures of anagenetic and cladogenetic speciation in six species of the genus Robinsonia (Asteraceae, Senecioneae), endemic to the Juan Fernández Islands, Chile. Population genetic structure was analyzed by amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeat, SSR) markers from 286 and 320 individuals, respectively, in 28 populations. Each species is genetically distinct. Previous hypotheses of classification among these species into subgenera and sections, via morphological, phytochemical, isozymic and internal transcribed spacer (ITS) data, have been confirmed, except that R. saxatilis appears to be related to R. gayana rather than R. evenia. Analysis of phylogenetic results and biogeographic context suggests that five of these species have originated by cladogenesis and adaptive radiation on the older Robinson Crusoe Island. The sixth species, R. masafuerae, restricted to the younger Alejandro Selkirk Island, is closely related to and an anagenetic derivative of R. evenia from Robinson Crusoe. Microsatellite and AFLP data reveal considerable genetic variation among the cladogenetically derived species of Robinsonia, but within each the genetic variation is lower, highlighting presumptive genetic isolation and rapid radiation. The anagenetically derived R. masafuerae harbors a level of genetic variation similar to that of its progenitor, R. evenia. This is the first direct comparison of the genetic consequences of anagenetic and cladogenetic speciation in plants of an oceanic archipelago.
Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Asteraceae/genética , Especiação Genética , Repetições de Microssatélites/genética , Chile , Variação Genética , Geografia , Filogenia , Especificidade da EspécieRESUMO
A common mode of speciation in oceanic islands is by anagenesis, wherein an immigrant arrives and through time transforms by mutation, recombination, and drift into a morphologically and genetically distinct species, with the new species accumulating a high level of genetic diversity. We investigate speciation in Drimys confertifolia, endemic to the two major islands of the Juan Fernández Archipelago, Chile, to determine genetic consequences of anagenesis, to examine relationships among populations of D. confertifolia and the continental species D. winteri and D. andina, and to test probable migration routes between the major islands. Population genetic analyses were conducted using AFLPs and nuclear microsatellites of 421 individuals from 42 populations from the Juan Fernández islands and the continent. Drimys confertifolia shows a wide genetic variation within populations on both islands, and values of genetic diversity within populations are similar to those found within populations of the continental progenitor. The genetic results are compatible with the hypothesis of high levels of genetic variation accumulating within anagenetically derived species in oceanic islands, and with the concept of little or no geographical partitioning of this variation over the landscape. Analysis of the probability of migration within the archipelago confirms colonization from the older island, Robinson Crusoe, to the younger island Alejandro Selkirk.
Assuntos
Drimys/genética , Especiação Genética , Ilhas , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Chile , Variação Genética , Genética Populacional , Geografia , Repetições de Microssatélites/genética , Modelos Biológicos , FilogeniaRESUMO
PREMISE OF THE STUDY: Anagenesis (or phyletic evolution) is one mode of speciation that occurs in the evolution of plants on oceanic islands. Of two endemic species on the Juan Fernández Islands (Chile), Myrceugenia fernandeziana and M. schulzei (Myrtaceae), believed to have originated anagenetically from different continental progenitors, the first is endemic to Robinson Crusoe Island and has no clear tie to continental relatives; the last is endemic to the younger island, Alejandro Selkirk Island, and has close affinity to M. colchaguensis in mainland Chile. METHODS: Using AFLPs and six nuclear microsatellites from 381 individuals representing 33 populations, we determined patterns of genetic variation within and among populations on both islands and between those of the islands and mainland. KEY RESULTS: Considerable genetic variation was found within populations on both islands. The level of gene diversity within M. schulzei was equivalent to that of its close continental relative M. colchaguensis. Genetic diversity was not partitioned geographically in M. fernandeziana and was weakly so and nonsignificantly in M. schulzei. CONCLUSIONS: The high genetic variation in both taxa is most likely due to anagenetic speciation. Subsidence of the older island Robinson Crusoe, landscape erosion, and restructuring of communities have severely reduced the overall island population to a single panmictic system. On the younger and less modified Alejandro Selkirk Island, slightly stronger patterns of genetic divergence are seen in M. schulzei. Because both species are genetically diverse and number in the thousands of individuals, neither is presently endangered in the archipelago.
Assuntos
Variação Genética , Myrtaceae/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Chile , Repetições de Microssatélites , FilogeografiaRESUMO
Ten microsatellite markers were developed for Robinsonia (Asteraceae), a genus endemic to the Juan Fernández Archipelago, Chile. Polymorphisms of these markers were tested using one population each of R. evenia, R. gayana, and R. gracilis. The number of alleles for these markers ranged from 2 to 17 per locus, and expected heterozygosity ranged from 0 to 0.847 by population. A significant deviation from Hardy-Weinberg equilibrium was observed in zero to two markers in each population, and no significant linkage disequilibrium between markers was detected. The markers reported here would be useful for evolutionary studies and conservation strategies in Robinsonia.
RESUMO
PREMISE OF THE STUDY: Microsatellite markers were developed in Erigeron rupicola and tested by amplification in six Erigeron species endemic to the Juan Fernández Archipelago, Chile, to investigate genetic diversity and population structure. ⢠METHODS AND RESULTS: Using 454 pyrosequencing, 24 primer pairs were developed in E. rupicola, 12 of which amplified and presented polymorphism among endemic species of Erigeron in the Archipelago. Two populations from E. rupicola and E. fernandezianus were genotyped, and one to eight alleles per locus per population were detected. The expected heterozygosity ranged from 0.000 to 0.812. ⢠CONCLUSIONS: These results indicate the utility of primers for cross-species populational studies in all endemic species of Erigeron in the Archipelago.
Assuntos
Primers do DNA/genética , DNA de Plantas/genética , Erigeron/genética , Repetições de Microssatélites , Polimorfismo Genético , Chile , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNARESUMO
BACKGROUND AND AIMS: Studies examining patterns and processes of speciation in South America are fewer than in North America and Europe. One of the least well documented processes has been progenitor-derivative speciation. A particularly instructive example occurs in the southern Andes in the genus Pozoa (Apiaceae, Azorelloideae), which consists of only two diploid outcrossing species, the widespread P. coriacea and the geographically and ecologically restricted P. volcanica. This paper tests the hypothesis that the latter species originated from the former through local geographical and ecological isolation by progenitor-derivative speciation. METHODS: DNA sequences were analysed from Pozoa and the related South American genera Asteriscium, Eremocharis and Gymnophyton from non-coding regions of the plastid genome, ndhF-rpl32 and rpl32-trnL, plus incorporation of previously reported rpl16 intron and trnD-trnT intergenic spacer sequences. Amplified fragment length polymorphism (AFLP) data from 105 individuals in 21 populations throughout the entire range of distribution of the genus were used for estimation of genetic diversity, divergence and SplitsTree network analysis. Ecological factors, including habitat and associated species, were also examined. KEY RESULTS: Pozoa coriacea is more similar genetically to the outgroup genera, Asteriscium and Eremocharis, than is P. volcanica. At the population level, only P. volcanica is monophyletic, whereas P. coriacea is paraphyletic. Analyses of genetic differentiation among populations and genetic divergence and diversity of the species show highest values in P. coriacea and clear reductions in P. volcanica. Pozoa coriacea occurs in several types of high elevation habitats, whereas P. volcanica is found only in newly formed open volcanic ash zones. CONCLUSIONS: All facts support that Pozoa represents a good example of progenitor-derivative speciation in the Andes of southern South America.
Assuntos
Apiaceae/genética , DNA de Plantas/análise , Ecologia , Evolução Molecular , Especiação Genética , Variação Genética , Genética Populacional , Geografia , Hibridização Genética , Filogenia , Análise de Sequência de DNA , América do SulRESUMO
We report the phylogeographic pattern of the Patagonian and Subantarctic plant Hypochaeris incana endemic to southeastern South America. We applied amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) analysis to 28 and 32 populations, respectively, throughout its distributional range and assessed ploidy levels using flow cytometry. While cpDNA data suggest repeated or simultaneous parallel colonization of Patagonia and Tierra del Fuego by several haplotypes and/or hybridization, AFLPs reveal three clusters corresponding to geographic regions. The central and northern Patagonian clusters (approximately 38-51 degrees S), which are closer to the outgroup, contain mainly tetraploid, isolated and highly differentiated populations with low genetic diversity. To the contrary, the southern Patagonian and Fuegian cluster (approximately 51-55 degrees S) contains mainly diploid populations with high genetic diversity and connected by high levels of gene flow. The data suggest that H. incana originated at the diploid level in central or northern Patagonia, from where it migrated south. All three areas, northern, central and southern, have similar levels of rare and private AFLP bands, suggesting that all three served as refugia for H. incana during glacial times. In southern Patagonia and Tierra del Fuego, the species seems to have expanded its populational system in postglacial times, when the climate became warmer and more humid. In central and northern Patagonia, the populations seem to have become restricted to favourable sites with increasing temperature and decreasing moisture and there was a parallel replacement of diploids by tetraploids in local populations.