Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Front Immunol ; 15: 1360140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711513

RESUMO

Introduction: Modified Vaccinia Virus Ankara (MVA) is a safe vaccine vector inducing long- lasting and potent immune responses. MVA-mediated CD8+T cell responses are optimally induced, if both, direct- and cross-presentation of viral or recombinant antigens by dendritic cells are contributing. Methods: To improve the adaptive immune responses, we investigated the role of the purinergic receptor P2X7 (P2RX7) in MVA-infected feeder cells as a modulator of cross-presentation by non-infected dendritic cells. The infected feeder cells serve as source of antigen and provide signals that help to attract dendritic cells for antigen take up and to license these cells for cross-presentation. Results: We demonstrate that presence of an active P2RX7 in major histocompatibility complex (MHC) class I (MHCI) mismatched feeder cells significantly enhanced MVA-mediated antigen cross-presentation. This was partly regulated by P2RX7-specific processes, such as the increased availability of extracellular particles as well as the altered cellular energy metabolism by mitochondria in the feeder cells. Furthermore, functional P2RX7 in feeder cells resulted in a delayed but also prolonged antigen expression after infection. Discussion: We conclude that a combination of the above mentioned P2RX7-depending processes leads to significantly increased T cell activation via cross- presentation of MVA-derived antigens. To this day, P2RX7 has been mostly investigated in regards to neuroinflammatory diseases and cancer progression. However, we report for the first time the crucial role of P2RX7 for antigen- specific T cell immunity in a viral infection model.


Assuntos
Linfócitos T CD8-Positivos , Apresentação Cruzada , Células Dendríticas , Receptores Purinérgicos P2X7 , Vaccinia virus , Receptores Purinérgicos P2X7/imunologia , Receptores Purinérgicos P2X7/metabolismo , Apresentação Cruzada/imunologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Vaccinia virus/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos , Camundongos Endogâmicos C57BL , Apresentação de Antígeno/imunologia , Antígenos Virais/imunologia , Humanos , Vacinas Virais/imunologia
2.
Exp Cell Res ; 439(1): 114055, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704080

RESUMO

BACKGROUND: Being implicated during tumor migration, invasion, clonogenicity, and proliferation, the nicotinamide adenine dinucleotide (NAD)/-phosphate (NADP)-dependent dehydrogenase/reductase member 2 (DHRS2) has been considered to be induced upon inhibition of histone deacetylases (HDACi). In this study, we evaluated the current knowledge on the underlying mechanisms of the (epi)genetic regulation of DHRS2, as well as its function during tumor progression. METHODS: DHRS2 expression was evaluated on mRNA- and protein-level upon treatment with HDACi by means of qRT-PCR and western blot analyses, respectively. Re-analysis of RNA-sequencing data gained insight into expression of specific DHRS2 isoforms, while re-analysis of ATAC-sequencing data shed light on the chromatin accessibility at the DHRS2 locus. Further examination of the energy and lipid metabolism of HDACi-treated urologic tumor cells was performed using liquid chromatography-mass spectrometry. RESULTS: Enhanced DHRS2 expression levels upon HDACi treatment were directly linked to an enhanced chromatin accessibility at the DHRS2 locus. Particularly the DHRS2 ENST00000250383.11 protein-coding isoform was increased upon HDACi treatment. Application of the HDACi quisinostat only mildly influenced the energy metabolism of urologic tumor cells, though, the analysis of the lipid metabolism showed diminished sphingosine levels, as well as decreased S1P levels. Also the ratios of S1P/sphingosine and S1P/ceramides were reduced in all four quisinostat-treated urologic tumor cells. CONCLUSIONS: With the emphasis on urologic malignancies (testicular germ cell tumors, urothelial, prostate, and renal cell carcinoma), this study concluded that elevated DHRS2 levels are indicative of a successful HDACi treatment and, thereby offering a novel putative predictive biomarker.

3.
J Cell Mol Med ; 28(9): e18342, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693852

RESUMO

Urothelial carcinoma (UC) urgently requires new therapeutic options. Histone deacetylases (HDAC) are frequently dysregulated in UC and constitute interesting targets for the development of alternative therapy options. Thus, we investigated the effect of the second generation HDAC inhibitor (HDACi) quisinostat in five UC cell lines (UCC) and two normal control cell lines in comparison to romidepsin, a well characterized HDACi which was previously shown to induce cell death and cell cycle arrest. In UCC, quisinostat led to cell cycle alterations, cell death induction and DNA damage, but was well tolerated by normal cells. Combinations of quisinostat with cisplatin or the PARP inhibitor talazoparib led to decrease in cell viability and significant synergistic effect in five UCCs and platinum-resistant sublines allowing dose reduction. Further analyses in UM-UC-3 and J82 at low dose ratio revealed that the mechanisms included cell cycle disturbance, apoptosis induction and DNA damage. These combinations appeared to be well tolerated in normal cells. In conclusion, our results suggest new promising combination regimes for treatment of UC, also in the cisplatin-resistant setting.


Assuntos
Apoptose , Inibidores de Histona Desacetilases , Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias da Bexiga Urinária , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/patologia
4.
J Biol Chem ; 300(5): 107251, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569939

RESUMO

Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling ß-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.

5.
Blood Adv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241490

RESUMO

The hallmark of multiple myeloma (MM) is a clonal plasma cell infiltration in the bone marrow accompanied by myelosuppression and osteolysis. Premalignant stages like monoclonal gammopathy of undetermined significance (MGUS) and asymptomatic stages like smoldering myeloma (SMM) can progress to multiple myeloma (MM). Mesenchymal stromal cells (MSC) are an integral component of the bone marrow microenvironment and play an important role for osteoblast differentiation and hematopoietic support. While stromal alterations have been reported in MM contributing to hematopoietic insufficiency and osteolysis, it is not clear whether alterations in MSC already occur in MGUS or SMM. In this study we analyzed MSC from MGUS, SMM and MM towards their properties and functionality and performed mRNA sequencing to find underlying molecular signatures in different disease stages. A high number of senescent cells and a reduced osteogenic differentiation capacity and hematopoietic support was already present in MGUS MSC. As shown by RNA sequencing there was a broad spectrum of differentially expressed genes including genes of the BMP/TGF-signaling pathway, detected already in MGUS and that clearly increases in SMM and MM patients. Our data may help to block these signaling pathways in the future to hinder progression to multiple myeloma.

6.
Cell Death Discov ; 9(1): 376, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838776

RESUMO

Alzheimer's disease is the most common age-associated neurodegenerative disorder and the most frequent form of dementia in our society. Aging is a complex biological process concurrently shaped by genetic, dietary and environmental factors and natural compounds are emerging for their beneficial effects against age-related disorders. Besides their antioxidant activity often described in simple model organisms, the molecular mechanisms underlying the beneficial effects of different dietary compounds remain however largely unknown. In the present study, we exploit the nematode Caenorhabditis elegans as a widely established model for aging studies, to test the effects of different natural compounds in vivo and focused on mechanistic aspects of one of them, quercetin, using complementary systems and assays. We show that quercetin has evolutionarily conserved beneficial effects against Alzheimer's disease (AD) pathology: it prevents Amyloid beta (Aß)-induced detrimental effects in different C. elegans AD models and it reduces Aß-secretion in mammalian cells. Mechanistically, we found that the beneficial effects of quercetin are mediated by autophagy-dependent reduced expression of Abl tyrosine kinase. In turn, autophagy is required upon Abl suppression to mediate quercetin's protective effects against Aß toxicity. Our data support the power of C. elegans as an in vivo model to investigate therapeutic options for AD.

7.
Front Oncol ; 13: 1228185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781195

RESUMO

Background: Patients with muscle-invasive bladder cancer face a poor prognosis due to rapid disease progression and chemoresistance. Thus, there is an urgent need for a new therapeutic treatment. The tumor microenvironment (TME) has crucial roles in tumor development, growth, progression, and therapy resistance. TME cells may also survive standard treatment of care and fire up disease recurrence. However, whether specific TME components have tumor-promoting or tumor-inhibitory properties depends on cell type and cancer entity. Thus, a deeper understanding of the interaction mechanisms between the TME and cancer cells is needed to develop new cancer treatment approaches that overcome therapy resistance. Little is known about the function and interaction between mesenchymal stromal cells (MSC) or fibroblasts (FB) as TME components and bladder cancer cells. Methods: We investigated the functional impact of conditioned media (CM) from primary cultures of different donors of MSC or FB on urothelial carcinoma cell lines (UCC) representing advanced disease stages, namely, BFTC-905, VMCUB-1, and UMUC-3. Underlying mechanisms were identified by RNA sequencing and protein analyses of cancer cells and of conditioned media by oncoarrays. Results: Both FB- and MSC-CM had tumor-promoting effects on UCC. In some experiments, the impact of MSC-CM was more pronounced. CM augmented the aggressive phenotype of UCC, particularly of those with epithelial phenotype. Proliferation and migratory and invasive capacity were significantly increased; cisplatin sensitivity was reduced. RNA sequencing identified underlying mechanisms and molecules contributing to the observed phenotype changes. NRF2 and NF-κB signaling was affected, contributing to improved cisplatin detoxification. Likewise, interferon type I signaling was downregulated and regulators of epithelial mesenchymal transition (EMT) were increased. Altered protein abundance of CXCR4, hyaluronan receptor CD44, or TGFß-signaling was induced by CM in cancer cells and may contribute to phenotypical changes. CM contained high levels of CCL2/MCP-1, MMPs, and interleukins which are well known for their impact on other cancer entities. Conclusions: The CM of two different TME components had overlapping tumor-promoting effects and increased chemoresistance. We identified underlying mechanisms and molecules contributing to the aggressiveness of bladder cancer cells. These need to be further investigated for targeting the TME to improve cancer therapy.

8.
Geburtshilfe Frauenheilkd ; 83(9): 1138-1147, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37706056

RESUMO

Introduction: The purpose of this feasibility study was to select targeted therapies according to "ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)". Data interpretation was further supported by a browser-based Treatment Decision Support platform (MH Guide, Molecular Health, Heidelberg, Germany). Patients: We applied next generation sequencing based whole exome sequencing of tumor tissue and peripheral blood of patients with metastatic breast cancer (n = 44) to detect somatic as well as germline mutations. Results: In 32 metastatic breast cancer patients, data interpretation was feasible. We identified 25 genomic alterations with ESCAT Level of Evidence I or II in 18/32 metastatic breast cancer patients, which were available for evaluation: three copy number gains in HER2 , two g BRCA1 , two g BRCA2 , six PIK3CA, one ESR1 , three PTEN , one AKT1 and two HER2 mutations. In addition, five samples displayed Microsatellite instability high-H. Conclusions: Resulting treatment options were discussed in a tumor board and could be recommended in a small but relevant proportion of patients with metastatic breast cancer (7/18). Thus, this study is a valuable preliminary work for the establishment of a molecular tumor board within the German initiative "Center for Personalized Medicine" which aims to shorten time for analyses and optimize selection of targeted therapies.

9.
Plant Biotechnol J ; 21(11): 2241-2253, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37593840

RESUMO

We present an easy-to-reproduce manual miniaturized full-length RNA sequencing (RNAseq) library preparation workflow that does not require the upfront investment in expensive lab equipment or long setup times. With minimal adjustments to an established commercial protocol, we were able to manually miniaturize the RNAseq library preparation by a factor of up to 1:8. This led to cost savings for miniaturized library preparation of up to 86.1% compared to the gold standard. The resulting data were the basis of a rigorous quality control analysis that inspected: sequencing quality metrics, gene body coverage, raw read duplications, alignment statistics, read pair duplications, detected transcripts and sequence variants. We also included a deep dive data analysis identifying rRNA contamination and suggested ways to circumvent these. In the end, we could not find any indication of biases or inaccuracies caused by the RNAseq library miniaturization. The variance in detected transcripts was minimal and not influenced by the miniaturization level. Our results suggest that the workflow is highly reproducible and the sequence data suitable for downstream analyses such as differential gene expression analysis or variant calling.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/metabolismo , Biblioteca Gênica , Análise de Sequência de RNA/métodos , Miniaturização
10.
Proc Natl Acad Sci U S A ; 120(34): e2301731120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590419

RESUMO

Fungal pathogens depend on sophisticated gene expression programs for successful infection. A crucial component is RNA regulation mediated by RNA-binding proteins (RBPs). However, little is known about the spatiotemporal RNA control mechanisms during fungal pathogenicity. Here, we discover that the RBP Khd4 defines a distinct mRNA regulon to orchestrate membrane trafficking during pathogenic development of Ustilago maydis. By establishing hyperTRIBE for fungal RBPs, we generated a comprehensive transcriptome-wide map of Khd4 interactions in vivo. We identify a defined set of target mRNAs enriched for regulatory proteins involved, e.g., in GTPase signaling. Khd4 controls the stability of target mRNAs via its cognate regulatory element AUACCC present in their 3' untranslated regions. Studying individual examples reveals a unique link between Khd4 and vacuole maturation. Thus, we uncover a distinct role for an RNA stability factor defining a specific mRNA regulon for membrane trafficking during pathogenicity.


Assuntos
Estabilidade de RNA , Regulon , RNA Mensageiro/genética , Regulon/genética , Regiões 3' não Traduzidas/genética
11.
Hepatol Commun ; 7(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486964

RESUMO

BACKGROUND: Macrophages play an important role in maintaining liver homeostasis and regeneration. However, it is not clear to what extent the different macrophage populations of the liver differ in terms of their activation state and which other liver cell populations may play a role in regulating the same. METHODS: Reverse transcription PCR, flow cytometry, transcriptome, proteome, secretome, single cell analysis, and immunohistochemical methods were used to study changes in gene expression as well as the activation state of macrophages in vitro and in vivo under homeostatic conditions and after partial hepatectomy. RESULTS: We show that F4/80+/CD11bhi/CD14hi macrophages of the liver are recruited in a C-C motif chemokine receptor (CCR2)-dependent manner and exhibit an activation state that differs substantially from that of the other liver macrophage populations, which can be distinguished on the basis of CD11b and CD14 expressions. Thereby, primary hepatocytes are capable of creating an environment in vitro that elicits the same specific activation state in bone marrow-derived macrophages as observed in F4/80+/CD11bhi/CD14hi liver macrophages in vivo. Subsequent analyses, including studies in mice with a myeloid cell-specific deletion of the TGF-ß type II receptor, suggest that the availability of activated TGF-ß and its downregulation by a hepatocyte-conditioned milieu are critical. Reduction of TGF-ßRII-mediated signal transduction in myeloid cells leads to upregulation of IL-6, IL-10, and SIGLEC1 expression, a hallmark of the activation state of F4/80+/CD11bhi/CD14hi macrophages, and enhances liver regeneration. CONCLUSIONS: The availability of activated TGF-ß determines the activation state of specific macrophage populations in the liver, and the observed rapid transient activation of TGF-ß may represent an important regulatory mechanism in the early phase of liver regeneration in this context.


Assuntos
Regeneração Hepática , Fator de Crescimento Transformador beta , Animais , Camundongos , Expressão Gênica , Hepatócitos/metabolismo , Macrófagos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
12.
Antioxidants (Basel) ; 12(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37237953

RESUMO

Mitochondrial DNA (mtDNA) is particularly vulnerable to somatic mutagenesis. Potential mechanisms include DNA polymerase γ (POLG) errors and the effects of mutagens, such as reactive oxygen species. Here, we studied the effects of transient hydrogen peroxide (H2O2 pulse) on mtDNA integrity in cultured HEK 293 cells, applying Southern blotting, ultra-deep short-read and long-read sequencing. In wild-type cells, 30 min after the H2O2 pulse, linear mtDNA fragments appear, representing double-strand breaks (DSB) with ends characterized by short GC stretches. Intact supercoiled mtDNA species reappear within 2-6 h after treatment and are almost completely recovered after 24 h. BrdU incorporation is lower in H2O2-treated cells compared to non-treated cells, suggesting that fast recovery is not associated with mtDNA replication, but is driven by rapid repair of single-strand breaks (SSBs) and degradation of DSB-generated linear fragments. Genetic inactivation of mtDNA degradation in exonuclease deficient POLG p.D274A mutant cells results in the persistence of linear mtDNA fragments with no impact on the repair of SSBs. In conclusion, our data highlight the interplay between the rapid processes of SSB repair and DSB degradation and the much slower mtDNA re-synthesis after oxidative damage, which has important implications for mtDNA quality control and the potential generation of somatic mtDNA deletions.

13.
Commun Biol ; 6(1): 418, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061565

RESUMO

All except one cytokine of the Interleukin (IL-)6 family share glycoprotein (gp) 130 as the common ß receptor chain. Whereas Interleukin (IL-)11 signal via the non-signaling IL-11 receptor (IL-11R) and gp130 homodimers, leukemia inhibitory factor (LIF) recruits gp130:LIF receptor (LIFR) heterodimers. Using IL-11 as a framework, we exchange the gp130-binding site III of IL-11 with the LIFR binding site III of LIF. The resulting synthetic cytokimera GIL-11 efficiently recruits the non-natural receptor signaling complex consisting of gp130, IL-11R and LIFR resulting in signal transduction and proliferation of factor-depending Ba/F3 cells. Besides LIF and IL-11, GIL-11 does not activate receptor complexes consisting of gp130:LIFR or gp130:IL-11R, respectively. Human GIL-11 shows cross-reactivity to mouse and rescued IL-6R-/- mice following partial hepatectomy, demonstrating gp130:IL-11R:LIFR signaling efficiently induced liver regeneration. With the development of the cytokimera GIL-11, we devise the functional assembly of the non-natural cytokine receptor complex of gp130:IL-11R:LIFR.


Assuntos
Hepatectomia , Interleucina-11 , Camundongos , Animais , Humanos , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Interleucina-11/genética , Receptores de Interleucina-11 , Antígenos CD/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais , Subunidade alfa de Receptor de Fator Inibidor de Leucemia
14.
Front Physiol ; 14: 1106075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860523

RESUMO

Introduction: We have previously shown that the novel positive allosteric modulator of the GABAA receptor, HK4, exerts hepatoprotective effects against lipotoxicity-induced apoptosis, DNA damage, inflammation and ER stress in vitro. This might be mediated by downregulated phosphorylation of the transcription factors NF-κB and STAT3. The current study aimed to investigate the effect of HK4 on lipotoxicity-induced hepatocyte injury at the transcriptional level. Methods: HepG2 cells were treated with palmitate (200 µM) in the presence or absence of HK4 (10 µM) for 7 h. Total RNA was isolated and the expression profiles of mRNAs were assessed. Differentially expressed genes were identified and subjected to the DAVID database and Ingenuity Pathway Analysis software for functional and pathway analysis, all under appropriate statistical testing. Results: Transcriptomic analysis showed substantial modifications in gene expression in response to palmitate as lipotoxic stimulus with 1,457 differentially expressed genes affecting lipid metabolism, oxidative phosphorylation, apoptosis, oxidative and ER stress among others. HK4 preincubation resulted in the prevention of palmitate-induced dysregulation by restoring initial gene expression pattern of untreated hepatocytes comprising 456 genes. Out of the 456 genes, 342 genes were upregulated and 114 downregulated by HK4. Enriched pathways analysis of those genes by Ingenuity Pathway Analysis, pointed towards oxidative phosphorylation, mitochondrial dysregulation, protein ubiquitination, apoptosis, and cell cycle regulation as affected pathways. These pathways are regulated by the key upstream regulators TP53, KDM5B, DDX5, CAB39 L and SYVN1, which orchestrate the metabolic and oxidative stress responses including modulation of DNA repair and degradation of ER stress-induced misfolded proteins in the presence or absence of HK4. Discussion: We conclude that HK4 specifically targets mitochondrial respiration, protein ubiquitination, apoptosis and cell cycle. This not only helps to counteract lipotoxic hepatocellular injury through modification of gene expression, but - by targeting transcription factors responsible for DNA repair, cell cycle progression and ER stress - might even prevent lipotoxic mechanisms. These findings suggest that HK4 has a great potential for the treatment of non-alcoholic fatty liver disease (NAFLD).

15.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982651

RESUMO

In contrast to class I/IIb/pan histone deacetylase inhibitors (HDACi), the role of class IIa HDACi as anti-cancer chemosensitizing agents is less well understood. Here, we studied the effects of HDAC4 in particular and the class IIa HDACi CHDI0039 on proliferation and chemosensitivity in Cal27 and cisplatin-resistant Cal27CisR head and neck squamous cell cancer (HNSCC). HDAC4 and HDAC5 overexpression clones were generated. HDAC4 overexpression (Cal27_HDAC4) increased proliferation significantly compared to vector control cells (Cal27_VC). Chicken chorioallantoic membrane (CAM) studies confirmed the in vitro results: Cal27_HDAC4 tumors were slightly larger than tumors from Cal27_VC, and treatment with CHDI0039 resulted in a significant decrease in tumor size and weight of Cal27_HDAC4 but not Cal27_VC. Unlike class I/pan-HDACi, treatment with CHDI0039 had only a marginal impact on cisplatin cytotoxicity irrespective of HDAC4 and HDAC5 expression. In contrast, the combination of CHDI0039 with bortezomib was synergistic (Chou-Talalay) in MTT and caspase 3/7 activation experiments. RNAseq indicated that treatment with CHDI0039 alters the expression of genes whose up- or downregulation is associated with increased survival in HNSCC patients according to Kaplan-Meier data. We conclude that the combination of class IIa HDACi with proteasome inhibitors constitutes an effective treatment option for HNSCC, particularly for platinum-resistant cancers.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Humanos , Inibidores de Histona Desacetilases/farmacologia , Bortezomib/farmacologia , Cisplatino , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética
16.
HLA ; 102(1): 28-43, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36932816

RESUMO

Accurate and comprehensive immunogenetic reference panels are key to the successful implementation of population-scale immunogenomics. The 5Mbp Major Histocompatibility Complex (MHC) is the most polymorphic region of the human genome and associated with multiple immune-mediated diseases, transplant matching and therapy responses. Analysis of MHC genetic variation is severely complicated by complex patterns of sequence variation, linkage disequilibrium and a lack of fully resolved MHC reference haplotypes, increasing the risk of spurious findings on analyzing this medically important region. Integrating Illumina, ultra-long Nanopore, and PacBio HiFi sequencing as well as bespoke bioinformatics, we completed five of the alternative MHC reference haplotypes of the current (GRCh38/hg38) build of the human reference genome and added one other. The six assembled MHC haplotypes encompass the DR1 and DR4 haplotype structures in addition to the previously completed DR2 and DR3, as well as six distinct classes of the structurally variable C4 region. Analysis of the assembled haplotypes showed that MHC class II sequence structures, including repeat element positions, are generally conserved within the DR haplotype supergroups, and that sequence diversity peaks in three regions around HLA-A, HLA-B+C, and the HLA class II genes. Demonstrating the potential for improved short-read analysis, the number of proper read pairs recruited to the MHC was found to be increased by 0.06%-0.49% in a 1000 Genomes Project read remapping experiment with seven diverse samples. Furthermore, the assembled haplotypes can serve as references for the community and provide the basis of a structurally accurate genotyping graph of the complete MHC region.


Assuntos
Antígenos de Histocompatibilidade Classe II , Complexo Principal de Histocompatibilidade , Humanos , Haplótipos , Alelos , Antígenos de Histocompatibilidade Classe II/genética , Complexo Principal de Histocompatibilidade/genética , Antígenos HLA/genética , Antígenos HLA-C/genética
17.
Plant Cell Environ ; 46(6): 1900-1920, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36790086

RESUMO

N-hydroxypipecolic acid (NHP) accumulates in pathogen-inoculated and distant leaves of the Arabidopsis shoot and induces systemic acquired resistance (SAR) in dependence of the salicylic acid (SA) receptor NPR1. We report here that SAR triggered by exogenous NHP treatment requires the function of the transcription factors TGA2/5/6 in addition to NPR1, and is further positively affected by TGA1/4. Consistently, a tga2/5/6 triple knockout mutant is fully impaired in NHP-induced SAR gene expression, while a tga1/4 double mutant shows an attenuated, partial transcriptional response to NHP. Moreover, tga2/5/6 and tga1/4 exhibited fully and strongly impaired pathogen-triggered SAR, respectively, while SA-induced resistance was more moderately compromised in both lines. At the same time, tga2/5/6 was not and tga1/4 only partially impaired in the accumulation of NHP and SA at sites of bacterial attack. Strikingly, SAR gene expression in the systemic tissue induced by local bacterial inoculation or locally applied NHP fully required functional TGA2/5/6 and largely depended on TGA1/4 factors. The systemic accumulation of NHP and SA was attenuated but not abolished in the SAR-compromised and transcriptionally blocked tga mutants, suggesting their transport from inoculated to systemic tissue. Our results indicate the existence of a critical TGA- and NPR1-dependent transcriptional module that mediates the induction of SAR and systemic defence gene expression by NHP.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Ácidos Pipecólicos/farmacologia , Ácidos Pipecólicos/metabolismo , Ácido Salicílico/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Life (Basel) ; 13(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36836688

RESUMO

Hypertrophic scarring in burn wounds is caused by overactive fibroblasts and myofibroblasts. Blue light reveals wavelength- and dose-dependent antibacterial and antiproliferative effects and may serve as a therapeutic option against wound infection and fibrotic conditions. Therefore, we evaluated in this study the effects of single and multiple irradiations with blue light at 420 nm (BL420) on the intracellular ATP concentration, and on the viability and proliferation of the human skin fibroblast (HDFs). In addition, possible BL420-induced effects on the catalase expression and differentiation were assessed by immunocytochemical staining and western blot analyses. Furthermore, we used RNA-seq analyses to identify BL420-affected genes. We found that BL420 induced toxicity in HDFs (up to 83%; 180 J/cm2). A low dose of 20 J/cm2 reduced the ATP concentration by ~50%. Multiple irradiations (4 × 20 J/cm2) inhibited proliferation without visible toxicity and reduced catalase protein expression by ~37% without affecting differentiation. The expression of about 300 genes was significantly altered. Many downregulated genes have functions in cell division/mitosis. BL420 can strongly influence the fibroblast physiology and has potential in wound therapy. However, it is important to consider the possible toxic and antiproliferative effects, which could potentially lead to impaired wound healing and reduced scar breaking strength.

19.
Br J Cancer ; 128(7): 1344-1359, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717670

RESUMO

BACKGROUND: In ovarian cancer (OC) therapy, even initially responsive patients develop drug resistance. METHODS: Here, we present an OC cell model composed of variants with differing degrees of acquired resistance to carboplatin (CBP), cross-resistance to paclitaxel, and CBP-induced metastatic properties (migration and invasion). Transcriptome data were analysed by two approaches identifying differentially expressed genes and CBP sensitivity-correlating genes. The impact of selected genes and signalling pathways on drug resistance and metastatic potential, along with their clinical relevance, was examined by in vitro and in silico approaches. RESULTS: TMEM200A and PRKAR1B were recognised as potentially involved in both phenomena, also having high predictive and prognostic values for OC patients. CBP-resistant MES-OV CBP8 cells were more sensitive to PI3K/Akt/mTOR pathway inhibitors Rapamycin, Wortmannin, SB216763, and transcription inhibitor Triptolide compared with parental MES-OV cells. When combined with CBP, Rapamycin decreased the sensitivity of parental cells while Triptolide sensitised drug-resistant cells to CBP. Four PI3K/Akt/mTOR inhibitors reduced migration in both cell lines. CONCLUSIONS: A newly established research model and two distinct transcriptome analysis approaches identified novel candidate genes enrolled in CBP resistance development and/or CBP-induced EMT and implied that one-gene targeting could be a better approach than signalling pathway inhibition for influencing both phenomena.


Assuntos
Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-akt , Humanos , Feminino , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Sirolimo , Perfilação da Expressão Gênica , Linhagem Celular Tumoral
20.
Cell Biol Toxicol ; 39(1): 319-343, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35701726

RESUMO

Adverse outcome pathways (AOPs) are organized sequences of key events (KEs) that are triggered by a xenobiotic-induced molecular initiating event (MIE) and summit in an adverse outcome (AO) relevant to human or ecological health. The AOP framework causally connects toxicological mechanistic information with apical endpoints for application in regulatory sciences. AOPs are very useful to link endophenotypic, cellular endpoints in vitro to adverse health effects in vivo. In the field of in vitro developmental neurotoxicity (DNT), such cellular endpoints can be assessed using the human "Neurosphere Assay," which depicts different endophenotypes for a broad variety of neurodevelopmental KEs. Combining this model with large-scale transcriptomics, we evaluated DNT hazards of two selected Chinese herbal medicines (CHMs) Lei Gong Teng (LGT) and Tian Ma (TM), and provided further insight into their modes-of-action (MoA). LGT disrupted hNPC migration eliciting an exceptional migration endophenotype. Time-lapse microscopy and intervention studies indicated that LGT disturbs laminin-dependent cell adhesion. TM impaired oligodendrocyte differentiation in human but not rat NPCs and activated a gene expression network related to oxidative stress. The LGT results supported a previously published AOP on radial glia cell adhesion due to interference with integrin-laminin binding, while the results of TM exposure were incorporated into a novel putative, stressor-based AOP. This study demonstrates that the combination of phenotypic and transcriptomic analyses is a powerful tool to elucidate compounds' MoA and incorporate the results into novel or existing AOPs for a better perception of the DNT hazard in a regulatory context.


Assuntos
Rotas de Resultados Adversos , Células-Tronco Neurais , Síndromes Neurotóxicas , Humanos , Ratos , Animais , Laminina/farmacologia , Síndromes Neurotóxicas/etiologia , Estresse Oxidativo , Medição de Risco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...