Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(22): 13257-13264, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31589819

RESUMO

Characteristic particle size, fluorescence intensity, and fluorescence spectra are important features to detect and categorize bioaerosols. A prototype size-resolved single-particle fluorescence spectrometer (S2FS) was developed to simultaneously measure aerodynamic diameters and fluorescence spectra. Emission spectra are dispersed in 512 channels from 370 to 610 nm, where a major portion of biological fluorescence emission occurs. The S2FS consists of an aerodynamic particle sizer and a fluorescence spectrometer with a 355 nm laser excitation source and an intensified charge-coupled device as the detector. Highly fluorescent particles, such as Ambrosia artemisiifolia pollen and Olea europaea pollen, can be distinguished by the S2FS on a single-particle level. For weakly fluorescent particles, fluorescence spectra can only be obtained by averaging multiple particles (between 100 and 3000) of the same kind. Preliminary ambient measurements in Mainz (Germany, central Europe) show that an emission peak at ∼440 nm was frequently observed for fluorescent fine particles (0.5-1 µm). Fluorescent fine particles accounted for 2.8% on average based on the number fraction in the fine mode. Fluorescent coarse particles (>1 µm) accounted for 8.9% on average based on the number fraction, with strongest occurrence observed during a thunderstorm and in the morning.


Assuntos
Laboratórios , Aerossóis , Europa (Continente) , Alemanha , Tamanho da Partícula , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...