Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(6): eadk2685, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324687

RESUMO

Transcription-replication conflicts (TRCs) induce formation of cotranscriptional RNA:DNA hybrids (R-loops) stabilized by G-quadruplexes (G4s) on the displaced DNA strand, which can cause fork stalling. Although it is known that these stalled forks can resume DNA synthesis in a process initiated by MUS81 endonuclease, how TRC-associated G4/R-loops are removed to allow fork passage remains unclear. Here, we identify the mismatch repair protein MutSß, an MLH1-PMS1 heterodimer termed MutLß, and the G4-resolving helicase FANCJ as factors that are required for MUS81-initiated restart of DNA replication at TRC sites in human cells. This DNA repair process depends on the G4-binding activity of MutSß, the helicase activity of FANCJ, and the binding of FANCJ to MLH1. Furthermore, we show that MutSß, MutLß, and MLH1-FANCJ interaction mediate FANCJ recruitment to G4s. These data suggest that MutSß, MutLß, and FANCJ act in conjunction to eliminate G4/R-loops at TRC sites, allowing replication restart.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi , Estruturas R-Loop , Humanos , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , DNA/genética
2.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076920

RESUMO

Phthalocyanines (Pcs) are promising candidates for photodynamic therapy (PDT) due to their absorption in the phototherapeutic window. However, the highly aromatic Pc core leads to undesired aggregation and decreased reactive oxygen species (ROS) production. Therefore, short PEG chain functionalized A3B type asymmetric Pc photosensitizers (PSs) were designed in order to decrease aggregation and increase the aqueous solubility. Here we report the synthesis, characterization, optical properties, cellular localization, and cytotoxicity of three novel Pc-based agents (LC31, MLC31, and DMLC31Pt). The stepwise functionalization of the peripheral moieties has a strong effect on the distribution coefficient (logP), cellular uptake, and localization, as well as photocytotoxicity. Additional experiments have revealed that the presence of the malonic ester moiety in the reported agent series is indispensable in order to induce photocytotoxicity. The best-performing agent, MLC31, showed mitochondrial targeting and an impressive phototoxic index (p.i.) of 748 in the cisplatin-resistant A2780/CP70 cell line, after a low-dose irradiation of 6.95 J/cm2. This is the result of a high photocytotoxicity (IC50 = 157 nM) upon irradiation with near-infrared (NIR) light, and virtually no toxicity in the dark (IC50 = 117 µM). Photocytotoxicity was subsequently determined under hypoxic conditions. Additionally, a preliminarily pathway investigation of the mitochondrial membrane potential (MMP) disruption and induction of apoptosis by MLC31 was carried out. Our results underline how agent design involving both hydrophilic and lipophilic peripheral groups may serve as an effective way to improve the PDT efficiency of highly aromatic PSs for NIR light-mediated cancer therapy.


Assuntos
Neoplasias Ovarianas , Fotoquimioterapia , Linhagem Celular Tumoral , Feminino , Humanos , Mitocôndrias , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia
3.
Am J Physiol Heart Circ Physiol ; 322(3): H427-H441, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35119335

RESUMO

Protein phosphatase 2A (PP2A) represents a heterotrimer that is responsible for the dephosphorylation of important regulatory myocardial proteins. This study was aimed to test whether the phosphorylation of PP2A-B56α at Ser41 by PKC is involved in the regulation of myocyte Ca2+ cycling and contraction. For this purpose, heart preparations of wild-type (WT) and transgenic mice overexpressing the nonphosphorylatable S41A mutant form (TG) were stimulated by administration of the direct PKC activator phorbol 12-myristate 13-acetate (PMA), and functional effects were studied. PKC activation was accompanied by the inhibition of PP2A activity in WT cardiomyocytes, whereas this effect was absent in TG. Consistently, the increase in the sarcomere length shortening and the peak amplitude of Ca2+ transients after PMA administration in WT cardiomyocytes was attenuated in TG. However, the costimulation with 1 µM isoprenaline was able to offset these functional deficits. Moreover, TG hearts did not show an increase in the phosphorylation of the myosin-binding protein C after administration of PMA but was detected in corresponding WT. PMA modulated voltage-dependent activation of the L-type Ca2+ channel (LTCC) differently in the two genotypes, shifting V1/2a by +1.5 mV in TG and by -2.4 mV in WT. In the presence of PMA, ICaL inactivation remained unchanged in TG, whereas it was slower in corresponding WT. Our data suggest that PKC-activated enhancement of myocyte contraction and intracellular Ca2+ signaling is mediated by phosphorylation of B56α at Ser41, leading to a decrease in PP2A activity.NEW & NOTEWORTHY The importance of the serine-41 phosphorylation site on B56α in reducing PP2A activity was demonstrated for the first time using a transgenic mutation model. Direct activation of PKC inhibits PP2A, leading to increased phosphorylation of MyBP-C in cardiomyocytes. The increased phosphorylation of contractile proteins is influenced by the PKC-phosphoB56α-PP2A signaling cascade resulting in improved intracellular Ca2+ handling and enhanced contractility and relaxation. PKC-mediated inhibition of PP2A also leads to modulation of the LTCC activation and inactivation kinetics.


Assuntos
Miócitos Cardíacos , Proteína Fosfatase 2 , Animais , Isoproterenol/farmacologia , Camundongos , Contração Muscular , Miócitos Cardíacos/metabolismo , Fosforilação , Proteína Fosfatase 2/metabolismo
4.
Chem Commun (Camb) ; 56(92): 14373-14376, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33140750

RESUMO

Novel tetraplatinated metalloporphyrin-based photosensitizers (PSs) are reported, which show excellent phototoxic indexes (PIs) up to 5800 against HeLa cells, which is, to the best of our knowledge, the highest value reported for any porphyrin so far. Furthermore, 67Zn isotope labelling allowed the determination of the ratio of zinc to platinum inside the cells using ICP-MS.


Assuntos
Metaloporfirinas/química , Fármacos Fotossensibilizantes/química , Platina/química , Isótopos de Zinco/química , Cobre/química , Células HeLa , Humanos , Marcação por Isótopo , Ligantes , Espectrometria de Massas , Metaloporfirinas/efeitos adversos , Imagem Óptica , Fotoquimioterapia , Fármacos Fotossensibilizantes/efeitos adversos , Platina/efeitos adversos , Relação Estrutura-Atividade , Distribuição Tecidual
5.
Photochem Photobiol Sci ; 18(11): 2792-2803, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626259

RESUMO

We report the first exocyclically metallated tetrapyridinoporphyrazine, [tetrakis-(trans-Pt(NH3)2Cl)-tetra(3,4-pyrido)porphyrazine-zinc(ii)](NO3)4 (4), synthesized in a multistep synthesis starting from 3,4-pyridinedicarbonitrile (1). The synthetic procedure involved a platination reaction of the intermediate tetra(3,4-pyrido)porphyrazine-zinc(ii) (2), whereby the zinc(ii) enhanced the solubility of the intermediate enabling the platination reaction. A similar approach to synthesize [tetrakis-(trans-Pt(NH3)2Cl)-tetra(3,4-pyrido)porphyrazine](NO3)4 (5) failed due to the unsuitable solubility properties of the intermediate tetra(3,4-pyrido)porphyrazine (3). The final product 4 and the intermediates were characterized, the photochemical and photophysical properties were determined and the photocytotoxicities were investigated. We demonstrate that the platinated tetra-pyridinoporphyrazine 4 is a potential photosensitizer for photodynamic therapy (PDT).


Assuntos
Fármacos Fotossensibilizantes/química , Porfirinas/química , Zinco/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Luz , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/síntese química , Porfirinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Estereoisomerismo
6.
Biochem Biophys Res Commun ; 514(3): 567-573, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31056253

RESUMO

Error-free repair of DNA double-strand breaks is orchestrated by homologous recombination (HR) pathways and requires the concerted action of several factors. Among these, Exonulcease-1 (EXO1) and DNA2/BLM execute extensive resection of DNA ends to produce 3'-overhangs, which are key intermediates for downstream steps of HR. To help shedding light on regulatory aspects of DNA repair pathways in which EXO1 participates, we set out to identify proteins interacting with EXO1. Affinity purification of EXO1 followed by Orbitrap mass spectrometry led to the identification of novel partners that are involved in RNA processing or that are the causative agents of rare X-linked disorders. Depletion of a selected subset of EXO1 interacting proteins led to reduction of the DNA damage response. Among those, we examined the RRP5-homologue and NF-kappa-B-interacting protein PDCD11/ALG-4, which has roles in apoptosis and is a putative driver gene in cutaneous T-cell lymphoma. We provide evidence that depletion of PDCD11 decreased the formation of γ-H2AX foci and the phosphorylation of DNA damage response (DDR) signaling intermediates in response to camptothecin or bleomycin, resulting in increased cellular resistance to DNA damage. Furthermore, extensive coverage of EXO1 sequence by mass spectrometry allowed conducting an in-depth analysis of its phosphorylation sites, with the identification of 26 residues that are differentially modified in untreated conditions or upon induction of DNA damage.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Mapeamento de Interação de Proteínas , Linhagem Celular Tumoral , Dano ao DNA , Redes Reguladoras de Genes , Humanos , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Reprodutibilidade dos Testes
7.
Sci Rep ; 9(1): 1335, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718768

RESUMO

CDC25 phosphatases play a key role in cell cycle transitions and are important targets for cancer therapy. Here, we set out to discover novel CDC25 inhibitors. Using a combination of computational methods, we defined a minimal common pharmacophore in established CDC25 inhibitors and performed virtual screening of a proprietary library. Based on the availability of crystal structures for CDC25A and CDC25B, we implemented a molecular docking strategy and carried out hit expansion/optimization. Enzymatic assays revealed that naphthoquinone scaffolds were the most promising CDC25 inhibitors among selected hits. At the molecular level, the compounds acted through a mixed-type mechanism of inhibition of phosphatase activity, involving reversible oxidation of cysteine residues. In 2D cell cultures, the compounds caused arrest of the cell cycle at the G1/S or at the G2/M transition. Mitotic markers analysis and time-lapse microscopy confirmed that CDK1 activity was impaired and that mitotic arrest was followed by death. Finally, the compounds induced differentiation, accompanied by decreased stemness properties, in intestinal crypt stem cell-derived Apc/K-Ras-mutant mouse organoids, and led to tumor regression and reduction of metastatic potential in zebrafish embryo xenografts used as in vivo model.


Assuntos
Proteína Quinase CDC2/genética , Neoplasias/genética , Conformação Proteica , Fosfatases cdc25/genética , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular/genética , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Xenoenxertos , Humanos , Camundongos , Mitose/genética , Simulação de Acoplamento Molecular , Naftoquinonas/farmacologia , Neoplasias/patologia , Fosfatases cdc25/antagonistas & inibidores , Fosfatases cdc25/química , Fosfatases cdc25/ultraestrutura
8.
Nucleic Acids Res ; 40(17): 8449-59, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22753033

RESUMO

Reactive oxygen species constantly generated as by-products of cellular metabolism readily attack genomic DNA creating mutagenic lesions such as 7,8-dihydro-8-oxo-guanine (8-oxo-G) that promote aging. 8-oxo-G:A mispairs arising during DNA replication are eliminated by base excision repair initiated by the MutY DNA glycosylase homologue (MUTYH). Here, by using formaldehyde crosslinking in mammalian cell extracts, we demonstrate that the WRN helicase/exonuclease defective in the premature aging disorder Werner syndrome (WS) is recruited to DNA duplex containing an 8-oxo-G:A mispair in a manner dependent on DNA polymerase λ (Polλ) that catalyzes accurate DNA synthesis over 8-oxo-G. Similarly, by immunofluorescence, we show that Polλ is required for accumulation of WRN at sites of 8-oxo-G lesions in human cells. Moreover, we show that nuclear focus formation of WRN and Polλ induced by oxidative stress is dependent on ongoing DNA replication and on the presence of MUTYH. Cell viability assays reveal that depletion of MUTYH suppresses the hypersensitivity of cells lacking WRN and/or Polλ to oxidative stress. Biochemical studies demonstrate that WRN binds to the catalytic domain of Polλ and specifically stimulates DNA gap filling by Polλ over 8-oxo-G followed by strand displacement synthesis. Our results suggest that WRN promotes long-patch DNA repair synthesis by Polλ during MUTYH-initiated repair of 8-oxo-G:A mispairs.


Assuntos
Pareamento Incorreto de Bases , DNA Glicosilases/metabolismo , Reparo do DNA , Exodesoxirribonucleases/metabolismo , Estresse Oxidativo , RecQ Helicases/metabolismo , Animais , Linhagem Celular , DNA/metabolismo , Dano ao DNA , DNA Polimerase beta/metabolismo , Replicação do DNA , Exodesoxirribonucleases/fisiologia , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Camundongos , RecQ Helicases/fisiologia , Fase S/genética , Helicase da Síndrome de Werner
9.
J Biol Inorg Chem ; 16(1): 33-44, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20803225

RESUMO

It is attractive to use vitamin B12 as a carrier for targeted delivery of cytotoxic agents such as platinum complexes owing to the high demand for vitamin B12 by fast proliferating cells. The basic {B12-CN-Pt(II)} conjugates are recognized by intracellular enzymes and converted to coenzyme B12 in an enzymatic adenosylation assay. The reductive adenosylation of {B12-CN-Pt(II)} conjugates leads to the release of the Pt(II) complexes; thus, {B12-CN-Pt(II)} conjugates can be considered as prodrugs. It is important not only to elucidate the activity of the cisplatin-B12 conjugates, but also to understand the mode of action on a molecular level. Chemical reduction of {B12-CN-Pt(II)} conjugates with cobaltocene yielded cob(II)alamin and induced release of the corresponding Pt(II) species. Kurnakov tests and coordination of 2'-deoxyguanosine or GMP to the released Pt(II) complexes allowed isolation and characterization of Pt(II) complexes as released during enzymatic adenosylation. The biological activity of these Pt(II) complexes was evaluated. Since the cleaved Pt(II) complexes show cytotoxicity, the {B12-CN-Pt(II)} conjugates can be used for specific targeting of cancer cells and therapeutic drug delivery. Preliminary in vitro cytotoxicity studies indicated lower activity (IC(50) between 8 and 88 µM) than found for pure cisplatin. Since active transport and receptor-mediated uptake limits the intracellular {B12-CN-Pt(II)} concentration, comparison with pure cisplatin is of limited use. We could show that the Pt(II) complexes cleaved from B12 exerted a cytotoxicity comparable to that of cisplatin itself. Cytotoxicity studies in vitamin B12 free media showed a dependence on the addition of transcobalamin II for B12-Pt(II) conjugates.


Assuntos
Antineoplásicos/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Compostos Organoplatínicos/farmacologia , Platina/química , Vitamina B 12/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cobalto/química , Relação Dose-Resposta a Droga , Portadores de Fármacos/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Platina/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Vitamina B 12/toxicidade
10.
EMBO Rep ; 11(12): 962-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21052091

RESUMO

End resection of DNA-which is essential for the repair of DNA double-strand breaks (DSBs) by homologous recombination-relies first on the partnership between MRE11-RAD50-NBS1 (MRN) and CtIP, followed by a processive step involving helicases and exonucleases such as exonuclease 1 (EXO1). In this study, we show that the localization of EXO1 to DSBs depends on both CtIP and MRN. We also establish that CtIP interacts with EXO1 and restrains its exonucleolytic activity in vitro. Finally, we show that on exposure to camptothecin, depletion of EXO1 in CtIP-deficient cells increases the frequency of DNA-PK-dependent radial chromosome formation. Thus, our study identifies new functions of CtIP and EXO1 in DNA end resection and provides new information on the regulation of DSB repair pathways, which is a key factor in the maintenance of genome integrity.


Assuntos
Proteínas de Transporte/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Exodesoxirribonucleases/metabolismo , Instabilidade Genômica , Proteínas Nucleares/metabolismo , Linhagem Celular Tumoral , Citoproteção , Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Células HEK293 , Humanos , Proteína Homóloga a MRE11 , Ligação Proteica , Recombinação Genética/genética
11.
Mol Ecol ; 18(17): 3668-82, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19674310

RESUMO

We report the phylogeographic pattern of the Patagonian and Subantarctic plant Hypochaeris incana endemic to southeastern South America. We applied amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) analysis to 28 and 32 populations, respectively, throughout its distributional range and assessed ploidy levels using flow cytometry. While cpDNA data suggest repeated or simultaneous parallel colonization of Patagonia and Tierra del Fuego by several haplotypes and/or hybridization, AFLPs reveal three clusters corresponding to geographic regions. The central and northern Patagonian clusters (approximately 38-51 degrees S), which are closer to the outgroup, contain mainly tetraploid, isolated and highly differentiated populations with low genetic diversity. To the contrary, the southern Patagonian and Fuegian cluster (approximately 51-55 degrees S) contains mainly diploid populations with high genetic diversity and connected by high levels of gene flow. The data suggest that H. incana originated at the diploid level in central or northern Patagonia, from where it migrated south. All three areas, northern, central and southern, have similar levels of rare and private AFLP bands, suggesting that all three served as refugia for H. incana during glacial times. In southern Patagonia and Tierra del Fuego, the species seems to have expanded its populational system in postglacial times, when the climate became warmer and more humid. In central and northern Patagonia, the populations seem to have become restricted to favourable sites with increasing temperature and decreasing moisture and there was a parallel replacement of diploids by tetraploids in local populations.


Assuntos
Asteraceae/genética , Evolução Molecular , Genética Populacional , Filogenia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Impressões Digitais de DNA , DNA de Cloroplastos/genética , DNA de Plantas/genética , Diploide , Citometria de Fluxo , Haplótipos , Poliploidia , Análise de Sequência de DNA , América do Sul
12.
Gene ; 412(1-2): 39-49, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18302977

RESUMO

This study aims to analyze the diversity of Ty1-copia retrotransposons in 18 taxa of Hypochaeris, including two Old World species H. maculata (2n=2x=10) and H. angustifolia (2n=2x=8), and representatives of the South American species (16 accessions of 15 species; all 2n=2x=8). Analysis of 380 PCR-amplified sequences, corresponding to a conserved domain of the subset of Ty1-copia reverse transcriptase (rt) gene amplifiable with degenerate standard primers, showed high levels of intra- and interspecific heterogeneity. Nucleotide diversity (Pi) of the copia fragments was high in all species and varied from 0.229 (H. angustifolia) to 0.412 (H. chillensis). Higher sequence heterogeneity correlates positively with larger genome size among analyzed species. Phylogenetic analyses of amplified fragments revealed different patterns of intraspecific heterogeneity within species, with most sequences forming one well-supported main clade while a few sequences fall into small clades or are left ungrouped. The combined analysis of all sequences revealed the presence of three main clades and showed that highly diverged species contain closely related Tyl-copia group retrotransposons. One of the main clades includes rt sequences of all South American species and three sequences of their putative ancestor, H. angustifolia, but no sequence of the Old World H. maculata. FISH with copia retrotransposons in four Hypochaeris species, including H. maculata and H. angustifolia and New World H. apargioides and H. spathulata, revealed differences in the chromosomal distribution between the two groups. In Old World species copia retroelements are distributed over the whole length of the chromosomes, excluding rDNA sites and some centromeres. In the South American species the two largest chromosome pairs are enriched in copia, while most of the long arms of the two small pairs of chromosomes are devoid of these elements. The patterns of heterogeneity and chromosomal distribution of Ty1-copia retrotransposons in Hypochaeris are discussed in the context of the origin, genome evolution and organization of the South American species.


Assuntos
Asteraceae/genética , DNA de Plantas/genética , Retroelementos/genética , Asteraceae/classificação , Cromossomos de Plantas/genética , Sequência Conservada , Genoma de Planta , Hibridização in Situ Fluorescente , Filogenia , Mapeamento Físico do Cromossomo , Reação em Cadeia da Polimerase , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA