Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(5): 2487-2499, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38180486

RESUMO

The solvophobicity-driven directional self-assembly of polymer-coated gold nanorods is a well-established phenomenon. Yet, the kinetics of this process, the origin of site-selectivity in the self-assembly, and the interplay of (attractive) solvophobic brush interactions and (repulsive) electrostatic forces are not fully understood. Herein, we use a combination of time-resolved (vis/NIR) extinction spectroscopy and finite-difference time-domain (FDTD) simulations to determine conversion profiles for the assembly of gold nanorods with polystyrene shells of distinct thicknesses into their (tip-to-tip) self-assembled structures. In particular, we demonstrate that the assembly process is highly protracted compared with diffusion-controlled rates, and we find that the assembly rate varies for different thickness values of the polymer shell. Our findings were rationalized using coarse-grained molecular dynamics simulations, which also corroborated the tip-to-tip preference in the self-assembly process, albeit with a uniform polymer coating. Utilizing the knowledge of quantified conversion rates for distinct colloidal species, we designed coassembling systems with different brush thicknesses, featuring "narcissistic" self-sorting behavior. This provides new perspectives for high-level supracolloidal self-assembly.

2.
Nanoscale ; 15(46): 18687-18695, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37941432

RESUMO

We achieved external activation of local hot-spot sites in supracolloidal assembly structures. The concept was demonstrated by boosting surface-enhanced Raman scattering (SERS) efficiency by one order of magnitude through a heating-induced process. Our approach involves assembling gold nanoparticles with distinct dimensions, i.e. 16 and 80 nm, into well-defined planet-satellite-type arrangement structures using thermoresponsive (poly(N-isopropylacrylamide)) star polymer linkers. Insights into the assembly process were obtained by calculations within the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory framework. We observe one order of magnitude increase in SERS enhancement by a heating-induced volume-phase transition. This magnification aligns with simulations run using the finite-difference time-domain (FDTD) method. The implications of this adaptive supracolloidal concept are twofold: Firstly, our approach bypasses limitations of existing systems that are associated with the limited accessibility of electromagnetic hot-spot sites in strongly coupled, static assemblies of plasmonic nanoparticles, by providing the capability of dynamic hot-spot re-configuration. Second, these externally activated probes offer promising opportunities for the development of messenger materials and associated sensing strategies.

3.
ACS Appl Mater Interfaces ; 15(36): 43124-43134, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37665350

RESUMO

Despite recent developments, surface-enhanced Raman spectroscopy (SERS) applications face challenges in achieving both high sensitivity and uniform Raman signals over a large area. Using the directional self-assembly of plasmonic nanoparticles in lattice structures, we show how one can increase the SERS signal 43-fold over randomly aligned gold nanoparticles without relying on the photoluminescence of Rhodamine 6G. For this study, we have chosen the lattice constant for an off-resonant case that matches the lattice resonance and super-radiant plasmon mode along the particle chain. Supported by electromagnetic simulations, we systematically analyze the radiative components of the plasmon modes by varying the particle size while keeping the lattice periodicity constant. We perform polarization-dependent SERS measurements and compare them with other standard SERS excitation wavelengths. Using the self-assembled plasmonic particle lattice, we have developed an effective SERS substrate that provides a significantly higher signal with 73% less surface coverage. This colloidal approach enables the cost-effective and scalable fabrication of highly sensitive, uniform, and polarization-dependent SERS substrates.

4.
Adv Mater ; 35(40): e2303288, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37468165

RESUMO

Quasi-2D (q2D) conjugated polymers (CPs) are polymers that consist of linear CP chains assembled through non-covalent interactions to form a layered structure. In this work, the synthesis of a novel crystalline q2D polypyrrole (q2DPPy) film at the air/H2 SO4 (95%) interface is reported. The unique interfacial environment facilitates chain extension, prevents disorder, and results in a crystalline, layered assembly of protonated quinoidal chains with a fully extended conformation in its crystalline domains. This unique structure features highly delocalized π-electron systems within the extended chains, which is responsible for the low effective mass and narrow electronic bandgap. Thus, the temperature-dependent charge-transport properties of q2DPPy are investigated using the van der Pauw (vdP) method and terahertz time-domain spectroscopy (THz-TDS). The vdP method reveals that the q2DPPy film exhibits a semiconducting behavior with a thermally activated hopping mechanism in long-range transport between the electrodes. Conversely, THz-TDS reveals a band-like transport, indicating intrinsic charge transport up to a record short-range high THz mobility of ≈107.1 cm2 V-1 s-1 .

5.
Chemistry ; 29(57): e202302100, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37461223

RESUMO

Nanostructures intrinsically possessing two different structural or functional features, often called Janus nanoparticles, are emerging as a potential material for sensing, catalysis, and biomedical applications. Herein, we report the synthesis of plasmonic gold Janus nanostars (NSs) possessing a smooth concave pentagonal morphology with sharp tips and edges on one side and, contrastingly, a crumbled morphology on the other. The methodology reported herein for their synthesis - a single-step growth reaction - is different from any other Janus nanoparticle preparation involving either template-assisted growth or a masking technique. Interestingly, the coexistence of lower- and higher-index facets was found in these Janus NSs. The general paradigm for synthesizing gold Janus NSs was investigated by understanding the kinetic control mechanism with the combinatorial effect of all the reagents responsible for the structure. The optical properties of the Janus NSs were realized by corelating their extinction spectra with the simulated data. The size-dependent surface-enhanced Raman scattering (SERS) activity of these Janus NSs was studied with 1,4-BDT as the model analyte. Finite-difference time-domain simulations for differently sized particles revealed the distribution of electromagnetic hot-spots over the particles resulting in enhancement of the SERS signal in a size-dependent manner.

6.
Langmuir ; 39(17): 6231-6239, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37074843

RESUMO

In the present work, we report the fabrication and characterization of well-defined core-satellite nanostructures. These nanostructures comprise block copolymer (BCP) micelles, containing a single gold nanoparticle (AuNP) in the core and multiple photoluminescent cadmium selenide (CdSe) quantum dots (QDs) attached to the micelle's coronal chains. The asymmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) BCP was employed to develop these core-satellite nanostructures in a series of P4VP-selective alcoholic solvents. The BCP micelles were first prepared in 1-propanol and subsequently mixed with AuNPs, followed by gradual addition of CdSe QDs. This method resulted in the development of spherical micelles that contained a PS/Au core and a P4VP/CdSe shell. These core-satellite nanostructures, developed in different alcoholic solvents, were further employed for the time-resolved photoluminescence analysis. It was found that solvent-selective swelling of the core-satellite nanostructures tunes the distance between the QDs and AuNPs and modulates their Förster resonance energy transfer (FRET) behavior. The average lifetime of the donor emission varied from 12.3 to 10.3 nanoseconds (ns) with the change in the P4VP-selective solvent within the core-satellite nanostructures. Furthermore, the distances between the donor and acceptor were also calculated using efficiency measurements and corresponding Förster distances. The resulting core-satellite nanostructures hold promising potential in various fields, such as photonics, optoelectronics, and sensors that utilize the FRET process.

7.
ACS Nano ; 17(3): 2399-2410, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36661409

RESUMO

Perovskite nanocrystals are high-performance, solution-processed materials with a high photoluminescence quantum yield. Due to these exceptional properties, perovskites can serve as building blocks for metasurfaces and are of broad interest for photonic applications. Here, we use a simple grating configuration to direct and amplify the perovskite nanocrystals' original omnidirectional emission. Thus far, controlling these radiation properties was only possible over small areas and at a high expense, including the risks of material degradation. Using a soft lithographic printing process, we can now reliably structure perovskite nanocrystals from the organic solution into light-emitting metasurfaces with high contrast on a large area. We demonstrate the 13-fold amplified directional radiation with an angle-resolved Fourier spectroscopy, which is the highest observed amplification factor for the perovskite-based metasurfaces. Our self-assembly process allows for scalable fabrication of gratings with predefined periodicities and tunable optical properties. We further show the influence of solution concentration on structural geometry. By increasing the perovskite concentration 10-fold, we can produce waveguide structures with a grating coupler in one printing process. We analyze our approach with numerical modeling, considering the physiochemical properties to obtain the desired geometry. This strategy makes the tunable radiative properties of such perovskite-based metasurfaces usable for nonlinear light-emitting devices and directional light sources.

8.
Nano Lett ; 22(18): 7499-7505, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36094390

RESUMO

The transition dipole orientations of dye assemblies in heterostructures have a crucial impact on the efficiency of novel optoelectronic devices such as organic thin-film transistors and light-emitting diodes. These devices are frequently based on heterojunctions and tandem structures featuring multiple optical transitions. Precise knowledge of preferred orientations, spatial order, and spatial variations is highly relevant. We present a fast and universal large-area screening method to determine the transition dipole orientations in dye assemblies with diffraction-limited spatial resolution. Moreover, our hyperspectral imaging approach disentangles the orientations of different chromophores. As a demonstration, we apply our technique to dye monolayers with two optical transitions sandwiched between two ultrathin silicate nanosheets. A comprehensive model for dipole orientation distributions in monolayers reveals a long-range orientational order and a strong correlation between the two transitions.

9.
Adv Mater ; 33(29): e2100381, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34085729

RESUMO

Advances in DNA nanotechnology allow the design and fabrication of highly complex DNA structures, uisng specific programmable interactions between smaller nucleic acid building blocks. To convey this concept to the fabrication of metallic nanoparticles, an assembly platform is developed based on a few basic DNA structures that can serve as molds. Programming specific interactions between these elements allows the assembly of mold superstructures with a range of different geometries. Subsequent seeded growth of gold within the mold cavities enables the synthesis of complex metal structures including tightly DNA-caged particles, rolling-pin- and dumbbell-shaped particles, as well as T-shaped and loop particles with high continuity. The method further supports the formation of higher-order assemblies of the obtained metal geometries. Based on electrical and optical characterizations, it is expected that the developed platform is a valuable tool for a self-assembly-based fabrication of nanoelectronic and nanooptic devices.


Assuntos
DNA , Ouro , Nanoestruturas , Nanotecnologia , Conformação de Ácido Nucleico
10.
Nat Mater ; 20(7): 1024-1028, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33927391

RESUMO

Dynamic control of circular polarization in chiral metasurfaces is being used in many photonic applications. However, simple fabrication routes to create chiral materials with considerable and fully tunable chiroptical responses at visible and near-infrared wavelengths are scarce. Here, we describe a scalable bottom-up approach to construct cross-stacked nanoparticle chain arrays that have a circular dichroism of up to 11°. Due to their layered design, the strong superchiral fields of the inter-layer region are accessible to chiral analytes, resulting in a tenfold enhanced sensitivity in a chiral sensing proof-of-concept experiment. In situ restacking and local mechanical compression enables full control over the entire set of circular dichroism characteristics, namely sign, magnitude and spectral position. Strain-induced reconfiguration opens up an intriguing route towards actively controlled pixel arrays using local deformation, which fosters continuous polarization engineering and multi-channel detection.

11.
Small ; 16(39): e2003662, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32875721

RESUMO

DNA nanostructures provide a powerful platform for the programmable assembly of nanomaterials. Here this approach is extended to synthesize rod-like gold nanoparticles in a full DNA controlled manner. The approach is based on DNA molds containing elongated cavities. Gold is deposited inside the molds using a seeded-growth procedure. By carefully exploring the growth parameters it is shown that gold nanostructures with aspect ratios of up to 7 can be grown from single seeds. The highly anisotropic growth is in this case controlled only by the rather soft and porous DNA walls. The optimized seeded growth procedure provides a robust and simple routine to achieve continuous gold nanostructures using DNA templating.


Assuntos
Ouro , Nanopartículas Metálicas , Anisotropia , DNA/química , Ouro/química , Nanopartículas Metálicas/química
12.
ACS Appl Mater Interfaces ; 11(28): 25595-25604, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31264839

RESUMO

Azobenzene-containing polymers (azopolymers) can serve as building blocks for an emerging class of soft photonics. Using their photoresponses for the micro/nanofabrication of smart surface is a key but still a challenging step. Here, we report a simple visible-light-illumination strategy to trigger diverse configurations of surface wrinkling on azopolymer-based film/substrate systems, which can be switched between flat and wrinkled states by controlling the intensity of the incident light. Different photoresponsive characteristics of azobenzene are involved in driving the wrinkling/dewrinkling switch. For the first time, we achieve the controlled wrinkling with an unexpected high aspect ratio and surprisingly polarization-independent ordered orientation by exploiting the unique photosoftening effect of azobenzene. Theoretical analysis reveals that an in situ photoinduced reversible soft/hard-contrast boundary determines the wrinkling orientation, which is used to fabricate diverse on-demand hierarchical wrinkles. These photoresponsive systems find broad photonic applications that are not easily accessible to other systems, e.g., optically reversible smart display, information security, and well-regulated optical devices.

13.
ACS Appl Mater Interfaces ; 11(31): 28189-28196, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31298836

RESUMO

We demonstrate a novel colloidal self-assembly approach toward obtaining mechanically tunable, cost-efficient, and low-loss plasmonic nanostructures that show pronounced optical anisotropy upon mechanical deformation. Soft lithography and template-assisted colloidal self-assembly are used to fabricate a stretchable periodic square lattice of gold nanoparticles on macroscopic areas. We stress the impact of particle size distribution on the resulting optical properties. To this end, lattices of narrowly distributed particles (∼2% standard deviation in diameter) are compared with those composed of polydisperse ones (∼14% standard deviation). The enhanced particle quality sharpens the collective surface lattice resonances by 40% to achieve a full width at half-maximum as low as 16 nm. This high optical quality approaches the theoretical limit for this system, as revealed by electromagnetic simulations. One hundred stretching cycles demonstrate a reversible transformation from a square to a rectangular lattice, accompanied by polarization-dependent optical properties. On the basis of these findings we envisage the potential applications as strain sensors and mechanically tunable filters.

14.
Nano Lett ; 19(6): 3854-3862, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117756

RESUMO

Chains of metallic nanoparticles sustain strongly confined surface plasmons with relatively low dielectric losses. To exploit these properties in applications, such as waveguides, the fabrication of long chains of low disorder and a thorough understanding of the plasmon-mode properties, such as dispersion relations, are indispensable. Here, we use a wrinkled template for directed self-assembly to assemble chains of gold nanoparticles. With this up-scalable method, chain lengths from two particles (140 nm) to 20 particles (1500 nm) and beyond can be fabricated. Electron energy-loss spectroscopy supported by boundary element simulations, finite-difference time-domain, and a simplified dipole coupling model reveal the evolution of a band of plasmonic waveguide modes from degenerated single-particle modes in detail. In striking difference from plasmonic rod-like structures, the plasmon band is confined in excitation energy, which allows light manipulations below the diffraction limit. The non-degenerated surface plasmon modes show suppressed radiative losses for efficient energy propagation over a distance of 1500 nm.

15.
ACS Appl Mater Interfaces ; 11(14): 13752-13760, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30874424

RESUMO

For many photonic applications, it is important to confine light of a specific wavelength at a certain volume of interest at low losses. So far, it is only possible to use the polarized light perpendicular to the solid grid lines to excite waveguide-plasmon polaritons in a waveguide-supported hybrid structure. In our work, we use a plasmonic grating fabricated by colloidal self-assembly and an ultrathin injection layer to guide the resonant modes selectively. We use gold nanoparticles self-assembled in a linear template on a titanium dioxide (TiO2) layer to study the dispersion relation with conventional ultraviolet-visible-near-infrared spectroscopic methods. Supported with finite-difference in time-domain simulations, we identify the optical band gaps as hybridized modes: plasmonic and photonic resonances. Compared to metallic grids, the observation range of hybridized guided modes can now be extended to modes along the nanoparticle chain lines. With future applications in energy conversion and optical filters employing these cost-efficient and upscalable directed self-assembly methods, we discuss also the application in refractive index sensing of the particle-based hybridized guided modes.

16.
Langmuir ; 35(26): 8629-8645, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30883131

RESUMO

Electromagnetic radiation of a certain frequency can excite the collective oscillation of the free electrons in metallic nanostructures using localized surface plasmon resonances (LSPRs), and this phenomenon can be used for a variety of optical and electronic functionalities. However, nanostructure design over a large area using controlled LSPR features is challenging and requires high accuracy. In this article, we offer an overview of the efforts made by our group to implement a wrinkle-assisted colloidal particle assembly method to approach this challenge from a different angle. First, we introduce the controlled wrinkling process and discuss the underlying theoretical framework. We then set out how the wrinkled surfaces are utilized to guide the self-assembly of colloidal nanoparticles of various surface chemistry, size, and shape. Subsequently, template-assisted colloidal self-assembly mechanisms and a general guide for particle assembly beyond plasmonics will be presented. In addition, we also discuss the collective plasmonic behavior in depth, including strong plasmonic coupling due to nanoscale gap size as well as magnetic mode excitation and demonstrate the potential applications of wrinkle-assisted colloidal particle assembly method in the field of mechanoresponsive metasurfaces and surface-enhanced spectroscopy. Lastly, a general perspective in the field of template-assisted colloidal assembly with regard to potential applications in plasmonic photocatalysis, solar cells, optoelectronics, and sensing devices is provided.

17.
ACS Appl Mater Interfaces ; 10(45): 39380-39390, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30345737

RESUMO

Hollow and porous core-shell nanostructures with defined interior nanogaps are of great significance in the field of surface-enhanced Raman scattering (SERS) applications because of the presence of intrinsic electromagnetic (EM) hot spots, multipolar resonances, and multiple facets. Further, nanomaterials having extinction in the near-infrared (NIR) region are particularly important for SERS and biomedical applications, and thus it is highly desirable to synthesize NIR-active plasmonic nanostructures. Herein, we report the synthesis of gold nanocapsules having a solid Au bead as core and a thin-porous rod-shaped shell with extinction in both NIR I and NIR II regions. Thermally induced twinned seeds were used for the silver-free synthesis of pentatwinned Au bead, which served as the foundation for the directed growth of Ag nanorods, which was finally converted to Au nanocapsules following galvanic replacement reaction (GRR). Detailed investigation was carried out to understand the effect of thermal treatment duration in the seed morphology and its subsequent growth to anisotropic Au beads. Ag overgrowth on Au beads yielded uniform Au-bead@Ag nanorods whose size can be tuned by varying the Ag precursor. Five different sized Au-bead@Ag nanorods were studied, and they were converted to Au nanocapsules following GRR. We explored the size-dependent SERS activity of the prepared Au nanocapsules along with their comparison with solid pentatwinned Au beads and found that the smallest sized Au nanocapsules were the best SERS performers. Finite-difference time-domain simulation revealed the presence of intense EM hot spots in the smallest sized Au nanocapsule and corroborated the experimental SERS data. Finally, we fabricated a simple flexible cellulose-based SERS substrate by using the smallest sized Au nanocapsules and investigated its SERS sensing ability for the detection of 2-napthalenethiol (2-NT), as a model analyte, and were able to achieve its detection down to 1 fM concentration.

18.
Nano Lett ; 18(11): 7323-7329, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30339400

RESUMO

Plasmonic waveguides consisting of metal nanoparticle chains can localize and guide light well below the diffraction limit, but high propagation losses due to lithography-limited large interparticle spacing have impeded practical applications. Here, we demonstrate that DNA-origami-based self-assembly of monocrystalline gold nanoparticles allows the interparticle spacing to be decreased to ∼2 nm, thus reducing propagation losses to 0.8 dB per 50 nm at a deep subwavelength confinement of 62 nm (∼λ/10). We characterize the individual waveguides with nanometer-scale resolution by electron energy-loss spectroscopy. Light propagation toward a fluorescent nanodiamond is directly visualized by cathodoluminescence imaging spectroscopy on a single-device level, thereby realizing nanoscale light manipulation and energy conversion. Simulations suggest that longitudinal plasmon modes arising from the narrow gaps are responsible for the efficient waveguiding. With this scalable DNA origami approach, micrometer-long propagation lengths could be achieved, enabling applications in information technology, sensing, and quantum optics.


Assuntos
DNA/química , Fluorescência , Ouro/química , Nanopartículas Metálicas/química , Nanodiamantes/química
19.
Chemistry ; 24(46): 11916-11921, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30024068

RESUMO

Light-driven water splitting is a potential source of abundant, clean energy, yet efficient charge-separation and size and position of the bandgap in heterogeneous photocatalysts are challenging to predict and design. Synthetic attempts to tune the bandgap of polymer photocatalysts classically rely on variations of the sizes of their π-conjugated domains. However, only donor-acceptor dyads hold the key to prevent undesired electron-hole recombination within the catalyst via efficient charge separation. Building on our previous success in incorporating electron-donating, sulphur-containing linkers and electron-withdrawing, triazine (C3 N3 ) units into porous polymers, we report the synthesis of six visible-light-active, triazine-based polymers with a high heteroatom-content of S and N that photocatalytically generate H2 from water: up to 915 µmol h-1 g-1 with Pt co-catalyst, and-as one of the highest to-date reported values -200 µmol h-1 g-1 without. The highly modular Sonogashira-Hagihara cross-coupling reaction we employ, enables a systematic study of mixed (S, N, C) and (N, C)-only polymer systems. Our results highlight that photocatalytic water-splitting does not only require an ideal optical bandgap of ≈2.2 eV, but that the choice of donor-acceptor motifs profoundly impacts charge-transfer and catalytic activity.

20.
ACS Appl Mater Interfaces ; 10(3): 3046-3057, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29268607

RESUMO

The functional properties of nanoparticle thin films depend strongly on the arrangement of the nanoparticles within the material. In particular, anisotropic optoelectronic properties can be achieved through the aligned assembly of 1D nanomaterials such as silver nanowires (AgNWs). However, the control of the hierarchical organization of these nanoscale building blocks across multiple length scales and over large areas is still a challenge. Here, we show that the oriented deposition of AgNWs using grazing incidence spraying of the nano-object suspensions on a substrate comprising parallel surface wrinkles readily produces highly oriented monolayer thin films on macroscopic areas (>5 × 5 mm2). The use of textured substrates enhances the degree of ordering as compared to flat ones and increases the area over which AgNWs are oriented. The resulting microscopic linear arrangement of AgNWs evaluated by scanning electron microscopy (SEM) reflects in a pronounced macroscopic optical anisotropy measured by conventional polarized UV-vis-NIR spectroscopy. The enhanced ordering obtained when spraying is done in the same direction as the wrinkles makes this approach more robust against small rotational offsets during preparation. On the contrary, the templating effect of the wrinkle topography can even dominate the shear-driven alignment when spraying is performed perpendicular to the wrinkles: the concomitant but opposing influence of topographic confinement (alignment along the wrinkles) and of spray-induced shear forces (orientation along the spraying direction) lead to films in which the predominant orientation of AgNWs gradually changes from one direction to its perpendicular one over the same substrate in a single processing step. This demonstrates that exploiting the subtle balance between shear forces and substrate-nanowire interactions mediated by wrinkles offers a new way to control the self-assembly of nanoparticles into more complex patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...