Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(5): 5633-5641, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31940165

RESUMO

The synthetic flexibility of metal-organic frameworks (MOFs) with high loading capacities and biocompatibility makes them ideal candidates as drug delivery systems (DDSs). Here, we report the use of CAU-7, a biocompatible bismuth-based MOF, for the delivery of two cancer drugs, sodium dichloroacetate (DCA) and α-cyano-4-hydroxycinnamic acid (α-CHC). We achieved loadings of 33 and 9 wt % for DCA and α-CHC, respectively. Interestingly, CAU-7 showed a gradual release of the drugs, achieving a release time of up to 17 days for DCA and 31 days for α-CHC. We then performed mechanical and thermal amorphization processes to attempt to delay the delivery of guest molecules even more. With the thermal treatment, we were able to achieve an outstanding 32% slower release of α-CHC from the thermally treated CAU-7. Using in vitro studies and endocytosis inhibitors, confocal microscopy, and fluorescence-activated cell sorting, we also demonstrated that CAU-7 was successfully internalized by cancer cells, partially avoiding lysosome degradation. Finally, we showed that CAU-7 loaded either with DCA or α-CHC had a higher therapeutic efficiency compared with the free drug approach, making CAU-7 a great option for biomedical application.


Assuntos
Antineoplásicos/química , Bismuto/química , Sistemas de Liberação de Medicamentos/métodos , Estruturas Metalorgânicas/química , Antineoplásicos/toxicidade , Bismuto/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Estabilidade de Medicamentos , Células HeLa , Humanos , Estruturas Metalorgânicas/toxicidade
2.
J Am Chem Soc ; 138(6): 1970-6, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26790573

RESUMO

A bismuth-based metal-organic framework (MOF), [Bi(BTC)(H2O)]·2H2O·MeOH denoted CAU-17, was synthesized and found to have an exceptionally complicated structure with helical Bi-O rods cross-linked by 1,3,5-benzenetricarboxylate (BTC(3-)) ligands. Five crystallographically independent 1D channels including two hexagonal channels, two rectangular channels, and one triangular channel have accessible diameters of 9.6, 9.6, 3.6, 3.6, and 3.4 Å, respectively. The structure is further complicated by twinning. Rod-incorporated MOF structures typically have underlying nets with only one unique node and three or four unique edges. In contrast, topological analysis of CAU-17 revealed unprecedented complexity for a MOF structure with 54 unique nodes and 135 edges. The complexity originates from the rod packing and the rods themselves, which are related to aperiodic helices.

3.
Chemistry ; 19(37): 12537-46, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23897702

RESUMO

A systematic investigation of the systems Bi(3+)/carboxylic acid/HNO3 for the tri- and tetracarboxylic acids pyromellitic acid (H4Pyr), trimellitic acid (H3Tri) and trimesic acid (H3BTC) acid led to the discovery of five new bismuth carboxylates. Structural characterisation allowed the influence of the linker geometry and the Bi(3+):linker molar ratio in the starting solution on the crystal structure to be determined. The crystallisation of three selected compounds was investigated by in situ energy-dispersive X-ray diffraction. Three new crystalline intermediates were observed within minutes, and two of them could be isolated by quenching of the reaction mixture. Their crystal structures were determined from laboratory and synchrotron X-ray powder diffraction data and allowed a possible reaction pathway to be established. In depth characterisation of the luminescence properties of the three bismuth pyromellate compounds was carried out. Fluorescence and phosphorescence could be assigned to (mainly) ligand- and metal-based transitions. The polymorphs of Bi(HPyr) exhibit different luminescence properties, although their structures are very similar. Surprisingly, doping of the three host structures with Eu(3+) and Tb(3+) ions was only successful for one of the polymorphs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA