Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 428: 45-54, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29704518

RESUMO

The signaling pathway driven by p38 and MAPKAPK2 alias MK2 is activated as part of stress responses, and these kinases represent attractive drug targets for cancer therapy. However, seemingly conflicting results were obtained when assessing the role of MK2 in chemotherapy. MK2 inhibitors were reported to either enhance or diminish the chemosensitivity of cancer cells. Here we show that this strongly depends on the particular chemotherapeutic drug. Two different MK2 inhibitors increased the proliferating fraction of pancreatic cancer-derived cells upon treatment with gemcitabine, whereas no consistent protection against cisplatin was observed. Both drugs enhanced, rather than attenuated, the toxicity of another DNA crosslinking agent, mitomycin C. Gemcitabine and cisplatin were each capable of activating MK2, and we did not observe differences in the intracellular localization of MK2 upon treatment. However, DNA replication fork progression, as determined by fiber assays, was restored by MK2 inhibition upon treatment with gemcitabine, but not when cisplatin was used. Thus, MK2 is required for the reduction in DNA replication in response to gemcitabine but not to cisplatin. These observations raise the need to carefully evaluate synergisms and antagonisms with conventional chemotherapeutics when taking MK2 inhibitors to the clinics.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Replicação do DNA/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitomicina/farmacologia , Mitomicina/uso terapêutico , Neoplasias Pancreáticas/patologia , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Gencitabina
2.
Cell Cycle ; 13(6): 884-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24556918

RESUMO

Pancreatic carcinoma is the major clinical entity where the nucleoside analog gemcitabine is used for first-line therapy. Overcoming cellular resistance toward gemcitabine remains a major challenge in this context. This raises the need to identify factors that determine gemcitabine sensitivity in pancreatic carcinoma cells. We previously found the MAPK-activated protein kinase 2 (MK2), part of the p38/MK2 stress response pathway, to be required for DNA replication fork stalling when osteosarcoma-derived cells were treated with gemcitabine. As a consequence, inhibition or depletion of MK2 protects these cells from gemcitabine-induced death (Köpper, et al. Proc Natl Acad Sci USA 2013; 110:16856-61). Here, we addressed whether MK2 also determines the sensitivity of pancreatic cancer cells toward gemcitabine. We found that MK2 inhibition reduced the intensity of the DNA damage response and enhanced survival of the pancreatic cancer cell lines BxPC-3, MIA PaCa-2, and Panc-1, which display a moderate to strong sensitivity to gemcitabine. In contrast, MK2 inhibition only weakly attenuated the DNA damage response intensity and did not enhance long-term survival in the gemcitabine-resistant cell line PaTu 8902. Importantly, in BxPC-3 and MIA PaCa-2 cells, inhibition of MK2 also rescued increased H2AX phosphorylation caused by inhibition of the checkpoint kinase Chk1 in the presence of gemcitabine. These results indicate that MK2 mediates gemcitabine efficacy in pancreatic cancer cells that respond to the drug, suggesting that the p38/MK2 pathway represents a determinant of the efficacy by that gemcitabine counteracts pancreatic cancer.


Assuntos
Adenocarcinoma/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Adenocarcinoma/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Dano ao DNA , Desoxicitidina/farmacologia , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Pancreáticas/patologia , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Gencitabina , Neoplasias Pancreáticas
3.
Proc Natl Acad Sci U S A ; 110(42): 16856-61, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082115

RESUMO

DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation. Moreover, MK2 activity was required for damage response, accumulation of ssDNA, and decreased survival when cells were treated with the nucleoside analogue gemcitabine or when the checkpoint kinase Chk1 was antagonized. By using DNA fiber assays, we found that MK2 inhibition or knockdown rescued DNA replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling.


Assuntos
Replicação do DNA , Pontos de Checagem da Fase G2 do Ciclo Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Dano ao DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Técnicas de Silenciamento de Genes , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Raios Ultravioleta , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Gencitabina
4.
Nutr Metab (Lond) ; 9(1): 86, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22995226

RESUMO

BACKGROUND: DOR/TP53INP2 acts both at the chromosomal level as a nuclear co-factor e.g. for the thyroid hormone receptor and at the extrachromosomal level as an organizing factor of the autophagosome. In a previous study, DOR was shown to be down-regulated in skeletal muscle of obese diabetic Zucker fa/fa rats. METHODS: To identify sites of differential DOR expression in metabolically active tissues, we measured differences in DOR expression in white adipose tissue (WAT), brown adipose tissue (BAT), skeletal muscle (SM) and heart muscle (HM) by qPCR. To assess whether DOR expression is influenced in the short term by nutritional factors, NMRI mice were fed different fat rich diets (fat diet, FD: 18% or high fat diet, HFD: 80% fat) for one week and DOR expression was compared to NMRI mice fed a control diet (normal diet, ND: 3.3% fat). Additionally, DOR expression was measured in young (45 days old) and adult (100 days old) genetically obese (DU6/DU6i) mice and compared to control (DUKs/DUKsi) animals. RESULTS: ANOVA results demonstrate a significant influence of diet, tissue type and sex on DOR expression in adipose and muscle tissues of FD and HFD mice. In SM, DOR expression was higher in HFD than in FD male mice. In WAT, DOR expression was increased compared to BAT in male FD and HFD mice. In contrast, expression levels in female mice were higher in BAT for both dietary conditions.DOR expression levels in all tissues of 100 days old genetically obese animals were mainly influenced by sex. In HM, DOR expression was higher in male than female animals. CONCLUSIONS: DOR expression varies under the influence of dietary fat content, tissue type and sex. We identified target tissues for further studies to analyze the specific function of DOR in obesity. DOR might be part of a defense mechanism against fat storage in high fat diets or obesity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...