Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(1): 102753, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442512

RESUMO

Small Heat shock proteins (sHsps) are a family of molecular chaperones that bind nonnative proteins in an ATP-independent manner. Caenorhabditis elegans encodes 16 different sHsps, among them Hsp17, which is evolutionarily distinct from other sHsps in the nematode. The structure and mechanism of Hsp17 and how these may differ from other sHsps remain unclear. Here, we find that Hsp17 has a distinct expression pattern, structural organization, and chaperone function. Consistent with its presence under nonstress conditions, and in contrast to many other sHsps, we determined that Hsp17 is a mono-disperse, permanently active chaperone in vitro, which interacts with hundreds of different C. elegans proteins under physiological conditions. Additionally, our cryo-EM structure of Hsp17 reveals that in the 24-mer complex, 12 N-terminal regions are involved in its chaperone function. These flexible regions are located on the outside of the spherical oligomer, whereas the other 12 N-terminal regions are engaged in stabilizing interactions in its interior. This allows the same region in Hsp17 to perform different functions depending on the topological context. Taken together, our results reveal structural and functional features that further define the structural basis of permanently active sHsps.


Assuntos
Proteínas de Choque Térmico Pequenas , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
2.
Curr Biol ; 32(1): 228-236.e3, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758285

RESUMO

Root hair (RH) growth to increase the absorptive root surface area is a key adaptation of plants to limiting phosphate availability in soils. Despite the importance of this trait, especially for seedling survival, little is known about the molecular events connecting phosphate starvation sensing and RH growth regulation. KARRIKIN INSENSITIVE2 (KAI2), an α/ß-hydrolase receptor of a yet-unknown plant hormone ("KAI2-ligand" [KL]), is required for RH elongation.1 KAI2 interacts with the F-box protein MORE AXILLIARY BRANCHING2 (MAX2) to target regulatory proteins of the SUPPRESSOR of MAX2 1 (SMAX1) family for degradation.2 Here, we demonstrate that Pi starvation increases KL signaling in Arabidopsis roots through transcriptional activation of KAI2 and MAX2. Both genes are required for RH elongation under these conditions, while smax1 smxl2 mutants have constitutively long RHs, even at high Pi availability. Attenuated RH elongation in kai2 mutants is explained by reduced shootward auxin transport from the root tip resulting in reduced auxin signaling in the RH zone, caused by an inability to increase localized accumulation of the auxin importer AUXIN TRANSPORTER PROTEIN1 (AUX1) and the auxin exporter PIN-FORMED2 (PIN2) upon Pi starvation. Consistent with AUX1 and PIN2 accumulation being mediated via ethylene signaling,3 expression of 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 7 (ACS7) is increased at low Pi in a KAI2-dependent manner, and treatment with an ethylene precursor restores RH elongation of acs7, but not of aux1 and pin2. Thus, KAI2 signaling is increased by phosphate starvation to trigger an ethylene- AUX1/PIN2-auxin cascade required for RH elongation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Furanos , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fosfatos/metabolismo , Raízes de Plantas , Piranos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...