Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 55(4): 619-630, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973454

RESUMO

Neuroblastoma, the most frequent solid tumor in infants, shows very diverse outcomes from spontaneous regression to fatal disease. When these different tumors originate and how they evolve are not known. Here we quantify the somatic evolution of neuroblastoma by deep whole-genome sequencing, molecular clock analysis and population-genetic modeling in a comprehensive cohort covering all subtypes. We find that tumors across the entire clinical spectrum begin to develop via aberrant mitoses as early as the first trimester of pregnancy. Neuroblastomas with favorable prognosis expand clonally after short evolution, whereas aggressive neuroblastomas show prolonged evolution during which they acquire telomere maintenance mechanisms. The initial aneuploidization events condition subsequent evolution, with aggressive neuroblastoma exhibiting early genomic instability. We find in the discovery cohort (n = 100), and validate in an independent cohort (n = 86), that the duration of evolution is an accurate predictor of outcome. Thus, insight into neuroblastoma evolution may prospectively guide treatment decisions.


Assuntos
Neuroblastoma , Lactente , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Prognóstico , Sequenciamento Completo do Genoma
2.
Neuro Oncol ; 23(12): 2028-2041, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34049392

RESUMO

BACKGROUND: Medulloblastomas with chromothripsis developing in children with Li-Fraumeni Syndrome (germline TP53 mutations) are highly aggressive brain tumors with dismal prognosis. Conventional photon radiotherapy and DNA-damaging chemotherapy are not successful for these patients and raise the risk of secondary malignancies. We hypothesized that the pronounced homologous recombination deficiency in these tumors might offer vulnerabilities that can be therapeutically utilized in combination with high linear energy transfer carbon ion radiotherapy. METHODS: We tested high-precision particle therapy with carbon ions and protons as well as topotecan with or without PARP inhibitor in orthotopic primary and matched relapsed patient-derived xenograft models. Tumor and normal tissue underwent longitudinal morphological MRI, cellular (markers of neurogenesis and DNA damage-repair), and molecular characterization (whole-genome sequencing). RESULTS: In the primary medulloblastoma model, carbon ions led to complete response in 79% of animals irrespective of PARP inhibitor within a follow-up period of 300 days postirradiation, as detected by MRI and histology. No sign of neurologic symptoms, impairment of neurogenesis or in-field carcinogenesis was detected in repair-deficient host mice. PARP inhibitors further enhanced the effect of proton irradiation. In the postradiotherapy relapsed tumor model, median survival was significantly increased after carbon ions (96 days) versus control (43 days, P < .0001). No major change in the clonal composition was detected in the relapsed model. CONCLUSION: The high efficacy and favorable toxicity profile of carbon ions warrants further investigation in primary medulloblastomas with chromothripsis. Postradiotherapy relapsed medulloblastomas exhibit relative resistance compared to treatment-naïve tumors, calling for exploration of multimodal strategies.


Assuntos
Neoplasias Cerebelares , Cromotripsia , Radioterapia com Íons Pesados , Síndrome de Li-Fraumeni , Meduloblastoma , Animais , Carbono , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/radioterapia , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/radioterapia , Camundongos
3.
Nat Genet ; 53(5): 683-693, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33767450

RESUMO

Neuroblastoma is a pediatric tumor of the developing sympathetic nervous system. However, the cellular origin of neuroblastoma has yet to be defined. Here we studied the single-cell transcriptomes of neuroblastomas and normal human developing adrenal glands at various stages of embryonic and fetal development. We defined normal differentiation trajectories from Schwann cell precursors over intermediate states to neuroblasts or chromaffin cells and showed that neuroblastomas transcriptionally resemble normal fetal adrenal neuroblasts. Importantly, neuroblastomas with varying clinical phenotypes matched different temporal states along normal neuroblast differentiation trajectories, with the degree of differentiation corresponding to clinical prognosis. Our work highlights the roles of oncogenic MYCN and loss of TFAP2B in blocking differentiation and may provide the basis for designing therapeutic interventions to overcome differentiation blocks.


Assuntos
Perfilação da Expressão Gênica , Neuroblastoma/genética , Neuroblastoma/patologia , Análise de Célula Única , Glândulas Suprarrenais/embriologia , Glândulas Suprarrenais/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Humanos , Transcriptoma/genética , Resultado do Tratamento
4.
Cancer Res ; 80(22): 4918-4931, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32973084

RESUMO

Chromothripsis is a form of genome instability by which a presumably single catastrophic event generates extensive genomic rearrangements of one or a few chromosomes. Widely assumed to be an early event in tumor development, this phenomenon plays a prominent role in tumor onset. In this study, an analysis of chromothripsis in 252 human breast cancers from two patient cohorts (149 metastatic breast cancers, 63 untreated primary tumors, 29 local relapses, and 11 longitudinal pairs) using whole-genome and whole-exome sequencing reveals that chromothripsis affects a substantial proportion of human breast cancers, with a prevalence over 60% in a cohort of metastatic cases and 25% in a cohort comprising predominantly luminal breast cancers. In the vast majority of cases, multiple chromosomes per tumor were affected, with most chromothriptic events on chromosomes 11 and 17 including, among other significantly altered drivers, CCND1, ERBB2, CDK12, and BRCA1. Importantly, chromothripsis generated recurrent fusions that drove tumor development. Chromothripsis-related rearrangements were linked with univocal mutational signatures, with clusters of point mutations due to kataegis in close proximity to the genomic breakpoints and with the activation of specific signaling pathways. Analyzing the temporal order of events in tumors with and without chromothripsis as well as longitudinal analysis of chromothriptic patterns in tumor pairs offered important insights into the role of chromothriptic chromosomes in tumor evolution. SIGNIFICANCE: These findings identify chromothripsis as a major driving event in human breast cancer.


Assuntos
Neoplasias da Mama/genética , Cromotripsia , Rearranjo Gênico , Recidiva Local de Neoplasia/genética , Algoritmos , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 17 , Ciclina D1/genética , Quinases Ciclina-Dependentes/genética , Reparo do DNA , Feminino , Fusão Gênica , Genes BRCA1 , Genes BRCA2 , Genes erbB-2 , Genes p53 , Humanos , Mutação INDEL , Transdução de Sinais , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
5.
Cancer Cell ; 35(4): 692-704.e12, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30905762

RESUMO

We studied how intratumoral genetic heterogeneity shapes tumor growth and therapy response for isocitrate dehydrogenase (IDH)-wild-type glioblastoma, a rapidly regrowing tumor. We inferred the evolutionary trajectories of matched pairs of primary and relapsed tumors based on deep whole-genome-sequencing data. This analysis suggests both a distant origin of de novo glioblastoma, up to 7 years before diagnosis, and a common path of early tumorigenesis, with one or more of chromosome 7 gain, 9p loss, or 10 loss, at tumor initiation. TERT promoter mutations often occurred later as a prerequisite for rapid growth. In contrast to this common early path, relapsed tumors acquired no stereotypical pattern of mutations and typically regrew from oligoclonal origins, suggesting sparse selective pressure by therapeutic measures.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Transformação Celular Neoplásica/genética , Evolução Molecular , Glioblastoma/genética , Isocitrato Desidrogenase/genética , Mutação , Telomerase/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cromossomos Humanos Par 7 , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Glioblastoma/enzimologia , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Isocitrato Desidrogenase/metabolismo , Recidiva Local de Neoplasia , Regiões Promotoras Genéticas , Transdução de Sinais , Telomerase/metabolismo , Fatores de Tempo
6.
Oncol Lett ; 15(2): 1728-1736, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29434868

RESUMO

The non-nucleoside reverse transcriptase inhibitor (NNRTI) Efavirenz is frequently used in human immunodeficiency virus treatment, but also efficient against cancer in mouse models. Its radiosensitizing effect makes it a promising drug for combination with radiotherapy. The efficacy of Efavirenz combined with irradiation was assessed with immunostaining of DNA-damage markers and colony formation assays in BxPC-3 pancreatic cancer cells. Gene expression and protein phosphorylation of the Efavirenz-sensitive BxPC-3 cells was compared to the resistant primary fibroblasts SBL-5. Oxidative stress, mitochondrial damage and cell death were studied with live-cell microscopy and flow cytometry. Combined Efavirenz and radiation significantly increased the number of γH2AX and phospho-ataxia telangiectasia mutated foci. Efavirenz and ionizing radiation had a synergistic effect using the clonogenic survival assay. Efavirenz selectively induced cell death in the BxPC-3 cells. The differing gene expression of cell cycle and apoptotic regulator genes in both cell cultures after Efavirenz treatment match with this selective effect against cancer cells. In the phosphoprotein array, an early phosphorylation of extracellular signal-related kinase 1/2 and p38 mitogen-activated protein kinase was notably detected in the cancer cells. The phosphorylation of AKT decreased in the cancer cells whereas it increased in the fibroblasts. Oxidative stress and mitochondrial membrane depolarization appeared in the cancer cells immediately after Efavirenz treatment, but not in the fibroblasts. Efavirenz has an anti-cancer effect against pancreatic cancer mainly by the induction of oxidative stress. The antitumor potential of Efavirenz and radiotherapy are additive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA