Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21798, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311534

RESUMO

Distribution patterns of fragile gelatinous fauna in the open ocean remain scarcely documented. Using epi-and mesopelagic video transects in the eastern tropical North Atlantic, which features a mild but intensifying midwater oxygen minimum zone (OMZ), we established one of the first regional observations of diversity and abundance of large gelatinous zooplankton. We quantified the day and night vertical distribution of 46 taxa in relation to environmental conditions. While distribution may be driven by multiple factors, abundance peaks of individual taxa were observed in the OMZ core, both above and below the OMZ, only above, or only below the OMZ whereas some taxa did not have an obvious distribution pattern. In the eastern eropical North Atlantic, OMZ expansion in the course of global climate change may detrimentally impact taxa that avoid low oxygen concentrations (Beroe, doliolids), but favour taxa that occur in the OMZ (Lilyopsis, phaeodarians, Cydippida, Colobonema, Haliscera conica and Halitrephes) as their habitat volume might increase. While future efforts need to focus on physiology and taxonomy of pelagic fauna in the study region, our study presents biodiversity and distribution data for the regional epi- and mesopelagic zones of Cape Verde providing a regional baseline to monitor how climate change may impact the largest habitat on the planet, the deep pelagic realm.


Assuntos
Biodiversidade , Zooplâncton , Animais , Oceano Atlântico , Cabo Verde , Zooplâncton/classificação , Zooplâncton/fisiologia
2.
Sci Rep ; 8(1): 4063, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497101

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

3.
Sci Rep ; 7(1): 4806, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684772

RESUMO

Nitrous oxide (N2O) is a climate relevant trace gas, and its production in the ocean generally increases under suboxic conditions. The Atlantic Ocean is well ventilated, and unlike the major oxygen minimum zones (OMZ) of the Pacific and Indian Oceans, dissolved oxygen and N2O concentrations in the Atlantic OMZ are relatively high and low, respectively. This study, however, demonstrates that recently discovered low oxygen eddies in the eastern tropical North Atlantic (ETNA) can produce N2O concentrations much higher (up to 115 nmol L-1) than those previously reported for the Atlantic Ocean, and which are within the range of the highest concentrations found in the open-ocean OMZs of the Pacific and Indian Oceans. N2O isotope and isotopomer signatures, as well as molecular genetic results, also point towards a major shift in the N2O cycling pathway in the core of the low oxygen eddy discussed here, and we report the first evidence for potential N2O cycling via the denitrification pathway in the open Atlantic Ocean. Finally, we consider the implications of low oxygen eddies for bulk, upper water column N2O at the regional scale, and point out the possible need for a reevaluation of how we view N2O cycling in the ETNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA