Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(3): 1894-1903, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207286

RESUMO

Molecular photoswitches are highly desirable in all chemistry-related areas of research. They provide effective outside control over geometric and electronic changes at the nanoscale using an easy to apply, waste-free stimulus. However, simple and effective access to such molecular tools is typically not granted, and elaborate syntheses and substitution schemes are needed in order to obtain efficient photoswitching properties. Here we present a series of rhodanine-based photoswitches that can be prepared in one simple synthetic step without requiring elaborate purification. Photoswitching is induced by UV and visible light in both switching directions, and thermal stabilities of the metastable states as well as quantum yields are very high. An additional benefit is the hydrogen-bonding capacity of the rhodanine fragment, which enables applications in supramolecular or medicinal chemistry. We further show that the known rhodanine-based inhibitor SMI-16a is a photoswitchable apoptosis inducer. The biological activity of SMI-16a can effectively be switched ON or OFF by reversible photoisomerization between the inactive E and the active Z isomer. Rhodanine-based photoswitches therefore represent an easy to access and highly valuable molecular toolbox for implementing light responsiveness to the breadth of functional molecular systems.

2.
Angew Chem Int Ed Engl ; 62(52): e202312955, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37806956

RESUMO

Molecular photoswitching with red light is greatly desired to evade photodamage and achieve specific photoresponses. In virtually all reported cases however, only one switching direction uses red light while for the reverse switching, UV or visible light is needed. All-red-light photoswitching brings with it the clear advantage of pushing photoswitching to the limit of the low-energy spectrum, but no viable system is available currently. Here we report on peri-anthracenethioindigo (PAT) as molecular scaffold for highly efficient all-red-light photoswitching with an outstanding performance and property profile. The PAT photoswitch provides near-infrared (NIR) absorption up to 850 nm, large negative photochromism with more than 140 nm maxima shifts and changes color from green to blue upon irradiation with two shades of red light. Thermal stability of the metastable Z isomer is high with a corresponding half-life of days at 20 °C. Application in red-light responsive polymers undergoing pronounced and reversible green to blue color changes demonstrate spatially resolved photoswitching. The PAT photoswitch thus offers unique responsiveness to very low energy light together with predictable and large geometrical changes within a rigid molecular scaffold. We expect a plethora of applications for PAT in the near future, e.g. in materials, molecular machines or biological context.

3.
Chem Sci ; 14(10): 2585-2595, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36908961

RESUMO

Subcomponent self-assembly relies on cation coordination whereas the roles of anions often only emerge during the assembly process. When sites for anions are instead pre-programmed, they have the potential to be used as orthogonal elements to build up structure in a predictable and modular way. We explore this idea by combining cation (M+) and anion (X-) binding sites together and show the orthogonal and modular build up of structure in a multi-ion assembly. Cation binding is based on a ligand (L) made by subcomponent metal-imine chemistry (M+ = Cu+, Au+) while the site for anion binding (X- = BF4 -, ClO4 -) derives from the inner cavity of cyanostar (CS) macrocycles. The two sites are connected by imine condensation between a pyridyl-aldehyde and an aniline-modified cyanostar. The target assembly [LM-CS-X-CS-ML],+ generates two terminal metal complexation sites (LM and ML) with one central anion-bridging site (X) defined by cyanostar dimerization. We showcase modular assembly by isolating intermediates when the primary structure-directing ions are paired with weakly coordinating counter ions. Cation-directed (Cu+) or anion-bridged (BF4 -) intermediates can be isolated along either cation-anion or anion-cation pathways. Different products can also be prepared in a modular way using Au+ and ClO4 -. This is also the first use of gold(i) in subcomponent self-assembly. Pre-programmed cation and anion binding sites combine with judicious selection of spectator ions to provide modular noncovalent syntheses of multi-component architectures.

4.
J Am Chem Soc ; 143(43): 18251-18260, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34665961

RESUMO

Red-light responsiveness of photoswitches is a highly desired property for many important application areas such as biology or material sciences. The main approach to elicit this property uses strategic substitution of long-known photoswitch motives such as azobenzenes or diarylethenes. Only very few photoswitches possess inherent red-light absorption of their core chromophore structures. Here, we present a strategy to convert the long-known purple indirubin dye into a prolific red-light-responsive photoswitch. In a supramolecular approach, its photochromism can be changed from a negative to a positive one, while at the same time, significantly higher yields of the metastable E-isomer are obtained upon irradiation. E- to Z-photoisomerization can then also be induced by red light of longer wavelengths. Indirubin therefore represents a unique example of reversible photoswitching using entirely red light for both switching directions.

5.
Chemistry ; 26(47): 10712-10718, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32485011

RESUMO

The photophysical and photochemical properties of sulfoxide and sulfone derivatives of hemithioindigo photoswitches are scrutinized and compared to the unoxidized parent chromophores. Oxidation results in significantly blue-shifted absorptions and mostly reduction of photochromism while thermal stabilities of individual isomers remain largely unaltered. Effective photoswitching takes place at shorter wavelengths compared to parent hemithioindigos and high isomeric yields can be obtained reversibly in the respective photostationary states. Reversible solid-state photoswitching is observed for a twisted sulfone derivative accompanied by visible color changes. These results establish oxidized hemithioindigo photoswitches as promising and versatile tools for robust light-control of molecular behavior for a wide range of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...