Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 4(3): 157-164, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29497161

RESUMO

Virus-induced diseases cause severe damage to cultivated plants, resulting in crop losses. Certain plant-virus interactions allow disease recovery at later stages of infection and have the potential to reveal important molecular targets for achieving disease control. Although recovery is known to involve antiviral RNA silencing1,2, the specific components of the many plant RNA silencing pathways 3 required for recovery are not known. We found that Arabidopsis thaliana plants infected with oilseed rape mosaic virus (ORMV) undergo symptom recovery. The recovered leaves contain infectious, replicating virus, but exhibit a loss of viral suppressor of RNA silencing (VSR) protein activity. We demonstrate that recovery depends on the 21-22 nt siRNA-mediated post-transcriptional gene silencing (PTGS) pathway and on components of a transcriptional gene silencing (TGS) pathway that is known to facilitate non-cell-autonomous silencing signalling. Collectively, our observations indicate that recovery reflects the establishment of a tolerant state in infected tissues and occurs following robust delivery of antiviral secondary siRNAs from source to sink tissues, and establishment of a dosage able to block the VSR activity involved in the formation of disease symptoms.


Assuntos
Inativação Gênica , Doenças das Plantas/virologia , Imunidade Vegetal , Interferência de RNA , Arabidopsis/imunologia , Arabidopsis/metabolismo , Northern Blotting , Western Blotting , Hibridização In Situ , Vírus do Mosaico , RNA Interferente Pequeno/metabolismo
2.
Mol Plant Microbe Interact ; 26(11): 1271-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23902263

RESUMO

The plant's innate immune system detects potential biotic threats through recognition of microbe-associated molecular patterns (MAMPs) or danger-associated molecular patterns (DAMPs) by pattern recognition receptors (PRR). A central regulator of pattern-triggered immunity (PTI) is the BRI1-associated kinase 1 (BAK1), which undergoes complex formation with PRR upon ligand binding. Although viral patterns inducing PTI are well known from animal systems, nothing similar has been reported for plants. Rather, antiviral defense in plants is thought to be mediated by post-transcriptional gene silencing of viral RNA or through effector-triggered immunity, i.e., recognition of virus-specific effectors by resistance proteins. Nevertheless, infection by compatible viruses can also lead to the induction of defense gene expression, indicating that plants may also recognize viruses through PTI. Here, we show that PTI, or at least the presence of the regulator BAK1, is important for antiviral defense of Arabidopsis plants. Arabidopsis bak1 mutants show increased susceptibility to three different RNA viruses during compatible interactions. Furthermore, crude viral extracts but not purified virions induce several PTI marker responses in a BAK1-dependent manner. Overall, we conclude that BAK1-dependent PTI contributes to antiviral resistance in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/genética , Vírus de RNA/fisiologia , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Interações Hospedeiro-Patógeno , Mutação , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Plântula , Transdução de Sinais , Vírion/isolamento & purificação , Vírion/fisiologia
3.
PLoS One ; 6(5): e19549, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21572953

RESUMO

Tobamoviruses encode a silencing suppressor that binds small RNA (sRNA) duplexes in vitro and supposedly in vivo to counteract antiviral silencing. Here, we used sRNA deep-sequencing combined with transcriptome profiling to determine the global impact of tobamovirus infection on Arabidopsis sRNAs and their mRNA targets. We found that infection of Arabidopsis plants with Oilseed rape mosaic tobamovirus causes a global size-specific enrichment of miRNAs, ta-siRNAs, and other phased siRNAs. The observed patterns of sRNA enrichment suggest that in addition to a role of the viral silencing suppressor, the stabilization of sRNAs might also occur through association with unknown host effector complexes induced upon infection. Indeed, sRNA enrichment concerns primarily 21-nucleotide RNAs with a 5'-terminal guanine. Interestingly, ORMV infection also leads to accumulation of novel miRNA-like sRNAs from miRNA precursors. Thus, in addition to canonical miRNAs and miRNA*s, miRNA precursors can encode additional sRNAs that may be functional under specific conditions like pathogen infection. Virus-induced sRNA enrichment does not correlate with defects in miRNA-dependent ta-siRNA biogenesis nor with global changes in the levels of mRNA and ta-siRNA targets suggesting that the enriched sRNAs may not be able to significantly contribute to the normal activity of pre-loaded RISC complexes. We conclude that tobamovirus infection induces the stabilization of a specific sRNA pool by yet unknown effector complexes. These complexes may sequester viral and host sRNAs to engage them in yet unknown mechanisms involved in plant:virus interactions.


Assuntos
Arabidopsis/genética , Arabidopsis/virologia , Doenças das Plantas/virologia , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Tobamovirus/fisiologia , Pareamento de Bases/genética , Sequência de Bases , Northern Blotting , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Dados de Sequência Molecular , Nucleotídeos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo
4.
Physiol Plant ; 140(1): 57-68, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20487378

RESUMO

MicroRNAs (miRNAs) are short RNA chains (20-24 bp) which are emerging as important regulators of gene expression. miRNAs are encoded by specific genes, and in Arabidopsis, 190 genes have presently been identified. It has been shown that miR399 is essential for the phosphate starvation response, and recent studies have shown transcriptional changes in a number of additional miRNAs in response to a shortage of phosphate. In this study, global profiles of the miRNA in shoots of Arabidopsis plants grown on limited phosphate or full nutrient in combination with sucrose feed were analysed using the miRCURY LNA microRNA Array system. Furthermore, changes in miRNA transcript were compared between a mutant lacking the transcription factor phosphate starvation responses 1 (PHR1) and wild-type plants. The global analysis identified miRNAs belonging to nine families to respond to P deprivation, sucrose or PHR1. Among these, miR399d, miR827, miR866, miR391 and miR163 were most prominently induced upon P starvation, whereas miR169b/c was strongly induced in previously starved plants when provided with sufficient P and more so when combined with an addition of sucrose. This study shows that array analysis is in general agreement with data obtained by other high-throughput technologies. The array data were confirmed by real-time reverse transcriptase-polymerase chain reaction analyses of selected pri-miRNAs. Our data corroborate the implication that several miRNAs are involved in the P-starvation response and further identify miR866 and miR163 as new candidates of miRNAs associated with the regulation of the P-starvation response.


Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Fosfatos/metabolismo , RNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de RNA , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...