Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39204325

RESUMO

Effectively utilizing MEK inhibitors in the clinic remains challenging due to off-target toxicity and lack of predictive biomarkers. Recent findings propose E-cadherin, a breast cancer diagnostic indicator, as a predictor of MEK inhibitor success. To address MEK inhibitor toxicity, traditional methodologies have systemically delivered nanoparticles, which require frequent, high-dose injections. Here, we present a different approach, employing a thermosensitive, biodegradable hydrogel with functionalized liposomes for local, sustained release of MEK inhibitor PD0325901 and doxorubicin. The poly(δ-valerolactone-co-lactide)-b-poly(ethylene-glycol)-b-poly(δ-valerolactone-co-lactide) triblock co-polymer gels at physiological temperature and has an optimal degradation time in vivo. Liposomes were functionalized with PR_b, a biomimetic peptide targeting the α5ß1 integrin receptor, which is overexpressed in E-cadherin-positive triple negative breast cancer (TNBC). In various TNBC models, the hydrogel-liposome system delivered via local injection reduced tumor progression and improved animal survival without toxic side effects. Our work presents the first demonstration of local, sustained delivery of MEK inhibitors to E-cadherin-positive tumors alongside traditional chemotherapeutics, offering a safe and promising therapeutic strategy.

2.
Biomacromolecules ; 25(9): 5702-5717, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39186039

RESUMO

Aging negatively impacts skin health, notably through the senescent cell phenotype, which reduces collagen production and leads to thinner, more fragile skin prone to injuries and chronic wounds. We designed a drug delivery system that addresses these age-related issues using a hybrid hydrogel-nanoparticle system that utilizes a poly(δ-valerolactone-co-lactide)-b-poly(ethylene-glycol)-b-poly(δ-valerolactone-co-lactide) (PVLA-PEG-PVLA) hydrogel. This hydrogel allows for the local, extended release of therapeutics targeting both proliferating and senescent cells. The PVLA-PEG-PVLA hydrogel entrapped valsartan, and metformin-loaded liposomes functionalized with a fibronectin-mimetic peptide, PR_b. Metformin acts as a senomorphic, reversing aspects of cellular senescence, and valsartan, an angiotensin receptor blocker, promotes collagen production. This combination treatment partially reversed the senescent phenotype and improved collagen production in senescent dermal fibroblasts from both young and old adults. Our codelivery hydrogel-nanoparticle system offers a promising treatment for improving age-related dermal pathologies.


Assuntos
Proliferação de Células , Senescência Celular , Colágeno , Fibroblastos , Hidrogéis , Metformina , Nanopartículas , Valsartana , Humanos , Valsartana/farmacologia , Valsartana/química , Valsartana/administração & dosagem , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Nanopartículas/química , Colágeno/química , Senescência Celular/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Metformina/farmacologia , Metformina/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Pele/metabolismo , Pele/efeitos dos fármacos
3.
Plant Methods ; 20(1): 19, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303074

RESUMO

BACKGROUND: Herbaria are becoming increasingly important as archives of biodiversity, and play a central role in taxonomic and biogeographic studies. There is also an ongoing interest in functional traits and the way they mediate interactions between a plant species and its environment. Herbarium specimens allow tracking trait values over time, and thus, capturing consequences of anthropogenic activities such as eutrophication. Here, we present an open, reproducible, non-destructive workflow to collect leaf trait data from herbarium specimens using near-infrared spectroscopy (NIRS), and a proof of concept for the reliability of this approach. RESULTS: We carried out three experiments to test the suitability of non-destructive NIRS methods to predict leaf traits both for fresh and dried leaves: (1) With a fertilization experiment, we studied whether NIRS was able to capture changes in leaf N and leaf P during a fertilization experiment and we compared contents predicted by NIRS with results obtained from regular wet lab methods. Calibration models for leaf nitrogen and phosphorus contents had a quality of R2 = 0.7 and 0.5, respectively. We fitted calibration models for NIRS readings on fresh and dried leaf samples, both of which produced equally precise predictions compared to results from wet lab analyses. (2) We tested the effect of herbarium conservation on NIRS readings by simulating them through the application of six treatments combining freezing, drying and pesticide spraying in a factorial scheme and comparing these with untreated samples. No consistent changes were observed in the spectra quality before and after the simulated herbarium conditions. (3) Finally, we studied the effect of specimen storage duration using specimens from a 2018 study which were re-analyzed and compared with spectra obtained in 2021. No consistent changes in spectra were observed after the storage period. CONCLUSIONS: The results demonstrate the reliability of NIRS to measure leaf N and P on herbarium samples. Together with the calibration method and dataset presented here, they provide a toolset allowing researchers to study the development of leaf traits and their response to environmental changes over decades and even centuries in a fast and non-destructive manner.

4.
Basic Appl Ecol ; 55: 110-123, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34493930

RESUMO

Research aimed at understanding the mechanisms underlying the relationship between tree diversity and antagonist infestation is often neglecting resource-use complementarity among plant species. We investigated the effects of tree species identity, species richness, and mycorrhizal type on leaf herbivory and pathogen infestation. We used a tree sapling experiment manipulating the two most common mycorrhizal types, arbuscular mycorrhiza and ectomycorrhiza, via respective tree species in monocultures and two-species mixtures. We visually assessed leaf herbivory and pathogen infestation rates, and measured concentrations of a suite of plant metabolites (amino acids, sugars, and phenolics), leaf elemental concentrations (carbon, nitrogen, and phosphorus), and tree biomass. Tree species and mycorrhizal richness had no significant effect on herbivory and pathogen infestation, whereas species identity and mycorrhizal type had. Damage rates were higher in arbuscular mycorrhizal (AM) than in ectomycorrhizal (EM) trees. Our structural equation model (SEM) indicated that elemental, but not metabolite concentrations, determined herbivory and pathogen infestation, suggesting that the investigated chemical defence strategies may not have been involved in the effects found in our study with tree saplings. Other chemical and physical defence strategies as well as species identity as its determinant may have played a more crucial role in the studied saplings. Furthermore, the SEM indicated a direct positive effect of AM trees on herbivory rates, suggesting that other dominant mechanisms, not considered here, were involved as well. We found differences in the attribution of elemental concentrations between the two rates. This points to the fact that herbivory and pathogen infestation are driven by distinct mechanisms. Our study highlights the importance of biotic contexts for understanding the mechanisms underlying the effects of biodiversity on tree-antagonist interactions.

5.
Sensors (Basel) ; 21(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34450711

RESUMO

Sequence time-domain reflectometry (STDR) and spread spectrum time-domain reflectometry (SSTDR) detect, locate, and diagnose faults in live (energized) electrical systems. In this paper, we survey the present SSTDR literature for discussions on theory, algorithms used in its analysis, and its more prominent implementations and applications. Our review includes both scientific litera-ture and selected patents. We also discuss future applications of SSTDR.


Assuntos
Algoritmos , Eletricidade
6.
Ann Bot ; 127(4): 565-576, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32318707

RESUMO

BACKGROUND AND AIMS: Non-native plant species are not restricted to lowlands, but increasingly are invading high elevations. While for both native and non-native species we expected variability of plant functional traits due to the changing environmental conditions along elevational gradients, we additionally assumed that non-native species are characterized by a more acquisitive growth strategy, as traits reflecting such a strategy have been found to correlate with invasion success. Furthermore, the typical lowland introduction of non-native species coming from multiple origins should lead to higher trait variability within populations of non-native species specifically at low elevations, and they might therefore occupy a larger total trait space. METHODS: Along an elevational gradient ranging from 55 to 1925 m a.s.l. on Tenerife, we collected leaves from eight replicate individuals in eight evenly distributed populations of five native and six non-native forb species. In each population, we measured ten eco-morphological and leaf biochemical traits and calculated trait variability within each population and the total trait space occupied by native and non-native species. KEY RESULTS: We found both positive (e.g. leaf dry matter content) and negative (e.g. leaf N) correlations with elevation for native species, but only few responses for non-native species. For non-native species, within-population variability of leaf dry matter content and specific leaf area decreased with elevation, but increased for native species. The total trait space occupied by all non-native species was smaller than and a subset of that of native species. CONCLUSIONS: We found little evidence that intraspecific trait variability is associated with the success of non-native species to spread towards higher elevations. Instead, for non-native species, our results indicate that intermediate trait values that meet the requirements of various conditions are favourable across the changing environmental conditions along elevational gradients. As a consequence, this might prevent non-native species from overcoming abruptly changing environmental conditions, such as when crossing the treeline.


Assuntos
Folhas de Planta , Plantas , Fenótipo , Plantas/genética , Espanha
7.
Ecosphere ; 9(5): e02226, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30323959

RESUMO

The widely observed positive relationship between plant diversity and ecosystem functioning is thought to be substantially driven by complementary resource use of plant species. Recent work suggests that biotic interactions among plants and between plants and soil organisms drive key aspects of resource use complementarity. Here, we provide a conceptual framework for integrating positive biotic interactions across guilds of organisms, more specifically between plants and mycorrhizal types, to explain resource use complementarity in plants and its consequences for plant competition. Our overarching hypothesis is that ecosystem functioning increases when more plant species associate with functionally dissimilar mycorrhizal fungi because differing mycorrhizal types will increase coverage of habitat space for and reduce competition among plants. We introduce a recently established field experiment (MyDiv) that uses different pools of tree species that associate with either arbuscular or ectomycorrhizal fungi to create orthogonal experimental gradients in tree species richness and mycorrhizal associations and present initial results. Finally, we discuss options for future mechanistic studies on resource use complementarity within MyDiv. We show how mycorrhizal types and biotic interactions in MyDiv can be used in the future to test novel questions regarding the mechanisms underlying biodiversity-ecosystem function relationships.

8.
Cancer Lett ; 404: 79-88, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28716523

RESUMO

The ruthenium drug and GRP78 inhibitor KP1339/IT-139 has already demonstrated promising anticancer activity in a phase I clinical trial. This study aimed to identify mechanisms underlying increased sensitivity to KP1339 treatment. Based on a screen utilizing 23 cell lines, a small panel was selected to compare KP1339-sensitive and low-responsive models. KP1339 sensitivity was neither based on differences in ruthenium accumulation, nor sensitivity to oxidative stress or constituents of KP1339 (ruthenium chloride and indazole). Subsequently, the biochemical response to KP1339 was analyzed using whole genome expression arrays indicating that, while sensitive cell lines were characterized by "response to chemical stimuli" and "regulation of cell death", low-responsive cells preferentially activated pathways controlling cell cycle, DNA repair, and metabolism. Cell culture experiments confirmed that, while low-responsive cells executed cell cycle arrest in G2 phase, pronounced apoptosis induction via activation of caspase 8 was found in sensitive cells. Cell death induction is based on a unique disruption of the ER homeostasis by depletion of key cellular chaperones including GRP78 in combination with enhanced KP1339-mediated protein damage.


Assuntos
Antineoplásicos/farmacologia , Caspase 8/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico/antagonistas & inibidores , Compostos Organometálicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , RNA Mensageiro/metabolismo , Rutênio/metabolismo
9.
J Inorg Biochem ; 159: 37-44, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26908285

RESUMO

Overall binding affinity of sodium or indazolium cis/trans-[MCl4(1H-indazole)(NO)] (M = Ru, Os) complexes towards human serum albumin (HSA) and high molecular mass components of the blood serum was monitored by ultrafiltration. HSA was found to be mainly responsible for the binding of the studied ruthenium and osmium complexes. In other words, this protein can provide a depot for the compounds and can affect their biodistribution and transport processes. In order to elucidate the HSA binding sites tryptophan fluorescence quenching studies and displacement reactions with the established site markers warfarin and dansylglycine were performed. Conditional stability constants for the binding to sites I and II on HSA were computed showing that the studied ruthenium and osmium complexes are able to bind into both sites with moderately strong affinity (logK' = 4.4-5.1). Site I is slightly more favored over site II for all complexes. No significant differences in the HSA binding properties were found for these metal complexes demonstrating negligible influence of the type of counterion (sodium vs indazolium), the metal ion center identity (Ru vs. Os) or the position of the nitrosyl group on the binding event. Electron paramagnetic resonance spin labeling of HSA revealed that indazolium trans-[RuCl4(1H-indazole)(NO)] and long-chain fatty acids show competitive binding to HSA. Moreover, this complex has a higher affinity for site I, but when present in excess, it is able to bind to site II as well, and displace fatty acids.


Assuntos
Indazóis/química , Compostos Organometálicos/química , Osmio/química , Rutênio/química , Albumina Sérica/química , Humanos
10.
Chemistry ; 21(39): 13703-13, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26260662

RESUMO

A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d-4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(µ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by (13)C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)](2-) are coordinated to Y(III) and Dy(III), respectively, with formation of [Ln{RuCl3(µ-ox)(NO)}4](5-) (Ln=Y, Dy). While Y(III) is eight-coordinate in 2, Dy(III) is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N(+) ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2-5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d-4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2-5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d-4f metal complexes 6-9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 µM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Óxidos de Nitrogênio/química , Antineoplásicos/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Células HeLa , Humanos , Concentração Inibidora 50 , Ligantes , Estrutura Molecular , Rutênio/química
11.
Inorg Chem ; 53(20): 11130-9, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25290960

RESUMO

A one-electron reduction of osmium(IV) complexes trans-[Os(IV)Cl4(Hazole)2], where Hazole = 1H-pyrazole ([1](0)), 2H-indazole ([2](0)), 1H-imidazole ([3](0)), and 1H-benzimidazole ([4](0)), afforded a series of eight new complexes as osmium analogues of KP1019, a lead anticancer drug in clinical trials, with the general formula (cation)[trans-Os(III)Cl4(Hazole)2], where cation = H2pz(+) (H2pz[1]), H2ind(+) (H2ind[2]), H2im(+) (H2im[3]), Ph4P(+) (Ph4P[3]), nBu4N(+) (nBu4N[3]), H2bzim(+) (H2bzim[4]), Ph4P(+) (Ph4P[4]), and nBu4N(+) (nBu4N[4]). All complexes were characterized by elemental analysis, (1)H NMR spectroscopy, electrospray ionization mass spectrometry, UV-vis spectroscopy, cyclic voltammetry, while H2pz[1], H2ind[2], and nBu4[3], in addition, by X-ray diffraction. The reduced species [1](-) and [4](-) are stable in aqueous media in the absence of air oxygen and do not react with small biomolecules such as amino acids and the nucleotide 5'-dGMP. Cell culture experiments in five different human cancer cell lines (HeLa, A549, FemX, MDA-MB-453, and LS-174) and one noncancerous cell line (MRC-5) were performed, and the results were discussed and compared to those for KP1019 and cisplatin. Benzannulation in complexes with similar structure enhances antitumor activity by several orders of magnitude, implicating different mechanisms of action of the tested compounds. In particular, complexes H2ind[2] and H2bzim[4] exhibited significant antiproliferative activity in vitro when compared to H2pz[1] and H2im[3].


Assuntos
Antineoplásicos/farmacologia , Técnicas Eletroquímicas , Indazóis/farmacologia , Compostos Organometálicos/farmacologia , Osmio/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Hidrólise , Indazóis/síntese química , Indazóis/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos de Rutênio , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade
12.
Inorg Chem ; 52(11): 6260-72, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23675748

RESUMO

Synthesis and X-ray diffraction structures of cis and trans isomers of ruthenium and osmium metal complexes of general formulas (nBu4N)[cis-MCl4(NO)(Hind)], where M = Ru (1) and Os (3), and (nBu4N)[trans-MCl4(NO)(Hind)], where M = Ru (2) and Os (4) and Hind = 1H-indazole are reported. Interconversion between cis and trans isomers at high temperatures (80-130 °C) has been observed and studied by NMR spectroscopy. Kinetic data indicate that isomerizations correspond to reversible first order reactions. The rates of isomerization reactions even at 110 °C are very low with rate constants of 10(-5) s(-1) and 10(-6) s(-1) for ruthenium and osmium complexes, respectively, and the estimated rate constants of isomerization at room temperature are of ca. 10(-10) s(-1). The activation parameters, which have been obtained from fitting the reaction rates at different temperatures to the Eyring equation for ruthenium [ΔH(cis-trans)‡ = 122.8 ± 1.3; ΔH(trans-cis)‡ = 138.8 ± 1.0 kJ/mol; ΔS(cis-trans)‡ = -18.7 ± 3.6; ΔS(trans-cis)‡ = 31.8 ± 2.7 J/(mol·K)] and osmium [ΔH(cis-trans)‡ = 200.7 ± 0.7; ΔH(trans-cis)‡ = 168.2 ± 0.6 kJ/mol; ΔS(cis-trans)‡ = 142.7 ± 8.9; ΔS(trans-cis)‡ = 85.9 ± 3.9 J/(mol·K)] reflect the inertness of these systems. The entropy of activation for the osmium complexes is highly positive and suggests the dissociative mechanism of isomerization. In the case of ruthenium, the activation entropy for the cis to trans isomerization is negative [-18.6 J/(mol·K)], while being positive [31.0 J/(mol·K)] for the trans to cis conversion. The thermodynamic parameters for cis to trans isomerization of [RuCl4(NO)(Hind)]-, viz. ΔH° = 13.5 ± 1.5 kJ/mol and ΔS° = -5.2 ± 3.4 J/(mol·K) indicate the low difference between the energies of cis and trans isomers. The theoretical calculation has been carried out on isomerization of ruthenium complexes with DFT methods. The dissociative, associative, and intramolecular twist isomerization mechanisms have been considered. The value for the activation energy found for the dissociative mechanism is in good agreement with experimental activation enthalpy. Electrochemical investigation provides further evidence for higher reactivity of ruthenium complexes compared to that of osmium counterparts and shows that intramolecular electron transfer reactions do not affect the isomerization process. A dissociative mechanism of cis↔trans isomerization has been proposed for both ruthenium and osmium complexes.


Assuntos
Azóis/química , Compostos Nitrosos/química , Compostos Organometálicos/química , Osmio/química , Rutênio/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Teoria Quântica , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA