Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(2): 1151-1162, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34734312

RESUMO

LGD-4033 (ligandrol) is a selective androgen receptor modulator (SARM), which is prohibited in sports by the World Anti-Doping Agency (WADA) and led to 62 adverse analytical findings (AAFs) in 2019. But not only deliberate doping with LGD-4033 constitutes a problem. In the past years, some AAFs that concerned SARMs can be attributed to contaminated dietary supplements (DS). Thus, the urgency to develop methods to differentiate between inadvertent doping and abuse of SARMs to benefit from the performance-enhancing effect of the compound in sports is growing. To gain a better understanding of the metabolism and excretion patterns of LGD-4033, human micro-dose excretion studies at 1, 10, and 50 µg LGD-4033 were conducted. Collected urine samples were prepared for analysis using enzymatic hydrolysis followed by solid-phase extraction and analyzed via LC-HRMS/MS. Including isomers, a total of 15 phase I metabolites were detected in the urine samples. The LC-HRMS/MS method was validated for qualitative detection of LGD-4033, allowing for a limit of detection (LOD) of 8 pg/mL. The metabolite M1, representing the epimer of LGD-4033, was synthesized and the structure elucidated by NMR spectroscopy. As the M1/LGD-4033 ratio changes over time, the ratio and the approximate LGD-4033 concentration can contribute to estimating the time point of drug intake and dose of LGD-4033 in doping control urine samples, which is particularly relevant in anti-doping result management.


Assuntos
Dopagem Esportivo/prevenção & controle , Nitrilas/farmacologia , Pirrolidinas/farmacologia , Receptores Androgênicos/efeitos dos fármacos , Cromatografia Líquida/métodos , Humanos , Limite de Detecção , Espectrometria de Massas em Tandem/métodos
2.
Biomed Chromatogr ; 36(2): e5274, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34729800

RESUMO

The misuse of 2-phenylethylamine (PEA) in sporting competitions is prohibited by the World Anti-Doping Agency. As it is endogenously produced, a method is required to differentiate between naturally elevated levels of PEA and the illicit administration of the drug. In 2015, a sulfo-conjugated metabolite [2-(2-hydroxyphenyl)acetamide sulfate (M1)] was identified, and pilot study data suggested that the ratio M1/PEA could be used as a marker indicating the oral application of PEA. Within this project, the required reference material of M1 was synthesized, single and multiple dose elimination studies were conducted and 369 native urine samples of athletes were analyzed as a reference population. While the oral administration of only 100 mg PEA did not affect urinary PEA concentrations, an increase in urinary concentrations of M1 was observed for all volunteers. However, urinary concentrations of both PEA and M1 showed relatively large inter-individual differences and establishing a cut-off-level for M1/PEA proved difficult. Consequently, a second metabolite, phenylacetylglutamine, was considered. Binary logistic regression demonstrated a significant (P < 0.05) correlation of the urinary M1 and phenylacetylglutamine concentrations with an oral administration of PEA, suggesting that assessing both analytes can assist doping control laboratories in identifying PEA misuse.


Assuntos
Dopagem Esportivo , Fenetilaminas/farmacocinética , Fenetilaminas/urina , Detecção do Abuso de Substâncias/métodos , Adulto , Biomarcadores/urina , Cromatografia Líquida , Feminino , Humanos , Limite de Detecção , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Adulto Jovem
3.
Rapid Commun Mass Spectrom ; 31(14): 1175-1183, 2017 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-28440570

RESUMO

RATIONALE: Selective androgen receptor modulators (SARMs) represent an emerging class of therapeutics targeting inter alia conditions referred to as cachexia and sarcopenia. Due to their anabolic properties, the use of SARMs is prohibited in sports as regulated by the World Anti-Doping Agency (WADA), and doping control laboratories test for these anabolic agents in blood and urine. In order to accomplish and maintain comprehensive test methods, the characterization of new drug candidates is critical for efficient sports drug testing. Hence, in the present study the mass spectrometric properties of the SARM YK-11 were investigated. METHODS: YK-11 was synthesized according to literature data and three different stable-isotope-labeled analogs were prepared to support the mass spectrometric studies. Using high-resolution/high-accuracy mass spectrometry following electrospray ionization as well as electron ionization, the dissociation pathways of YK-11 were investigated, and characteristic features of its (product ion) mass spectra were elucidated. These studies were flanked by density functional theory (DFT) computation providing information on proton affinities of selected functional groups of the analyte. RESULTS AND CONCLUSIONS: The steroidal SARM YK-11 was found to readily protonate under ESI conditions followed by substantial in-source dissociation processes eliminating methanol, acetic acid methyl ester, and/or ketene. DFT computation yielded energetically favored structures of the protonated species resulting from the aforementioned elimination processes particularly following protonation of the steroidal D-ring substituent. Underlying dissociation pathways were suggested, supported by stable-isotope labeling of the analyte, and diagnostic product ions for the steroidal nucleus and the D-ring substituent were identified. Further, trimethylsilylated YK-11 and its deuterated analogs were subjected to electron ionization high-resolution/high-accuracy mass spectrometry, complementing the dataset characterizing this new SARM. The obtained fragment ions resulted primarily from A/B- and C/D-ring structures of the steroidal nucleus, thus supporting future studies e.g. concerning metabolic pathways of the substance. Copyright © 2017 John Wiley & Sons, Ltd.

4.
Nat Commun ; 6: 6210, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25703681

RESUMO

Ensemble averaging of molecular states is fundamental for the experimental determination of thermodynamic quantities. A special case occurs for single-molecule investigations under equilibrium conditions, for which free energy, entropy and enthalpy at finite temperatures are challenging to determine with ensemble averaging alone. Here we report a method to directly record time-averaged equilibrium probability distributions by confining an individual molecule to a nanoscopic pore of a two-dimensional metal-organic nanomesh, using temperature-controlled scanning tunnelling microscopy. We associate these distributions with partition function projections to assess real-space-projected thermodynamic quantities, aided by computational modelling. The presented molecular dynamics-based analysis is able to reproduce experimentally observed projected microstates with high accuracy. By an in silico customized energy landscape, we demonstrate that distinct probability distributions can be encrypted at different temperatures. Such modulation provides means to encode and decode information into position-temperature space.

5.
Nano Lett ; 14(8): 4461-8, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25078022

RESUMO

Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal-organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol(-1) (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules.


Assuntos
Simulação de Dinâmica Molecular , Nanoporos/ultraestrutura , Rotação
6.
Sci Rep ; 3: 1454, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23503526

RESUMO

Scanning tunneling spectroscopy (STS) enables the local, energy-resolved investigation of a samples surface density of states (DOS) by measuring the differential conductance (dI/dV) being approximately proportional to the DOS. It is popular to examine the electronic structure of elementary samples by acquiring dI/dV maps under constant current conditions. Here we demonstrate the intricacy of STS mapping of samples exhibiting a strong corrugation originating from electronic density and local work function changes. The confinement of the Ag(111) surface state by a porous organic network is studied with maps obtained under constant-current (CC) as well as open-feedback-loop (OFL) conditions. We show how the CC maps deviate markedly from the physically more meaningful OFL maps. By applying a renormalization procedure to the OFL data we can mimic the spurious effects of the CC mode and thereby rationalize the physical effects evoking the artefacts in the CC maps.

7.
Proc Natl Acad Sci U S A ; 107(50): 21332-6, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21098303

RESUMO

The confinement of molecular species in nanoscale environments leads to intriguing dynamic phenomena. Notably, the organization and rotational motions of individual molecules were controlled by carefully designed, fully supramolecular host architectures. Here we use an open 2D coordination network on a smooth metal surface to steer the self-assembly of discrete trimeric guest units, identified as noncovalently bound dynamers. Each caged chiral supramolecule performs concerted, chirality-preserving rotary motions within the template honeycomb pore, which are visualized and quantitatively analyzed using temperature-controlled scanning tunneling microscopy. Furthermore, with higher thermal energies, a constitutional system dynamics appears, which is revealed by monitoring repetitive switching events of the confined supramolecules' chirality signature, reflecting decay and reassembly of the caged units.


Assuntos
Metais/química , Nanotecnologia/métodos , Microscopia de Tunelamento , Estrutura Molecular , Estereoisomerismo , Propriedades de Superfície
8.
Nano Lett ; 9(10): 3509-14, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19534501

RESUMO

The confinement of surface-state electrons by a complex supramolecular network is studied with low-temperature scanning tunneling microscopy and rationalized by electronic structure calculations using a boundary element method. We focus on the self-assembly of dicarbonitrile-sexiphenyl molecules on Ag(111) creating an open kagomé topology tessellating the surface into pores with different size and symmetry. This superlattice imposes a distinct surface electronic structure modulation, as observed by tunneling spectroscopy and thus acts as a dichotomous array of quantum corrals. The inhomogenous lateral electronic density distribution in the chiral cavities is reproduced by an effective pseudopotential model. Our results demonstrate the engineering of ensembles of elaborate quantum resonance states by molecular self-assembly at surfaces.

9.
J Am Chem Soc ; 131(11): 3881-3, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19256496

RESUMO

A surface-supported open metal-organic nanomesh featuring a 24 nm(2) cavity size and extending to mum domains was fabricated by Co-directed assembly of para-hexaphenyl-dicarbonitrile linker molecules in two dimensions. The metallosupramolecular lattice is thermally robust and resides fully commensurate on the employed Ag(111) substrate as directly verified by high-resolution scanning tunneling microscopy observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA