Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 541, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177346

RESUMO

SARS-CoV-2 can infect human cells through the recognition of the human angiotensin-converting enzyme 2 receptor. This affinity is given by six amino acid residues located in the variable loop of the receptor binding domain (RBD) within the Spike protein. Genetic recombination involving bat and pangolin Sarbecoviruses, and natural selection have been proposed as possible explanations for the acquisition of the variable loop and these amino acid residues. In this study we employed Bayesian phylogenetics to jointly reconstruct the phylogeny of the RBD among human, bat and pangolin Sarbecoviruses and detect recombination events affecting this region of the genome. A recombination event involving RaTG13, the closest relative of SARS-CoV-2 that lacks five of the six residues, and an unsampled Sarbecovirus lineage was detected. This result suggests that the variable loop of the RBD didn't have a recombinant origin and the key amino acid residues were likely present in the common ancestor of SARS-CoV-2 and RaTG13, with the latter losing five of them probably as the result of recombination.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , SARS-CoV-2/genética , Filogenia , Pangolins , Teorema de Bayes , Recombinação Genética , Aminoácidos/genética
2.
Virus Evol ; 9(2): vead070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107332

RESUMO

Phylodynamic methods have lately played a key role in understanding the spread of infectious diseases. During the coronavirus disease (COVID-19) pandemic, large scale genomic surveillance has further increased the potential of dynamic inference from viral genomes. With the continual emergence of novel severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants, explicitly allowing transmission rate differences between simultaneously circulating variants in phylodynamic inference is crucial. In this study, we present and empirically validate an extension to the BEAST2 package birth-death skyline model (BDSKY), BDSKY[Formula: see text], which introduces a scaling factor for the transmission rate between independent, jointly inferred trees. In an extensive simulation study, we show that BDSKY[Formula: see text] robustly infers the relative transmission rates under different epidemic scenarios. Using publicly available genome data of SARS-CoV-2, we apply BDSKY[Formula: see text] to quantify the transmission advantage of the Omicron over the Delta variant in Berlin, Germany. We find the overall transmission rate of Omicron to be scaled by a factor of two with pronounced variation between the individual clusters of each variant. These results quantify the transmission advantage of Omicron over the previously circulating Delta variant, in a crucial period of pre-established non-pharmaceutical interventions. By inferring variant- as well as cluster-specific transmission rate scaling factors, we show the differences in transmission dynamics for each variant. This highlights the importance of incorporating lineage-specific transmission differences in phylodynamic inference.

3.
Science ; 381(6656): eabg0818, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37499002

RESUMO

The origins of the Indo-European language family are hotly disputed. Bayesian phylogenetic analyses of core vocabulary have produced conflicting results, with some supporting a farming expansion out of Anatolia ~9000 years before present (yr B.P.), while others support a spread with horse-based pastoralism out of the Pontic-Caspian Steppe ~6000 yr B.P. Here we present an extensive database of Indo-European core vocabulary that eliminates past inconsistencies in cognate coding. Ancestry-enabled phylogenetic analysis of this dataset indicates that few ancient languages are direct ancestors of modern clades and produces a root age of ~8120 yr B.P. for the family. Although this date is not consistent with the Steppe hypothesis, it does not rule out an initial homeland south of the Caucasus, with a subsequent branch northward onto the steppe and then across Europe. We reconcile this hybrid hypothesis with recently published ancient DNA evidence from the steppe and the northern Fertile Crescent.


Assuntos
Idioma , Teorema de Bayes , Europa (Continente) , Fazendas , Idioma/história , Filogenia
4.
PLoS Negl Trop Dis ; 17(5): e0010362, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126517

RESUMO

BACKGROUND: Plague is a zoonotic disease caused by the bacterium Yersinia pestis, highly prevalent in the Central Highlands, a mountainous region in the center of Madagascar. After a plague-free period of over 60 years in the northwestern coast city of Mahajanga, the disease reappeared in 1991 and caused several outbreaks until 1999. Previous research indicates that the disease was reintroduced to the city of Mahajanga from the Central Highlands instead of reemerging from a local reservoir. However, it is not clear how many reintroductions occurred and when they took place. METHODOLOGY/PRINCIPAL FINDINGS: In this study we applied a Bayesian phylogeographic model to detect and date migrations of Y. pestis between the two locations that could be linked to the re-emergence of plague in Mahajanga. Genome sequences of 300 Y. pestis strains sampled between 1964 and 2012 were analyzed. Four migrations from the Central Highlands to Mahajanga were detected. Two resulted in persistent transmission in humans, one was responsible for most of the human cases recorded between 1995 and 1999, while the other produced plague cases in 1991 and 1992. We dated the emergence of the Y. pestis sub-branch 1.ORI3, which is only present in Madagascar and Turkey, to the beginning of the 20th century, using a Bayesian molecular dating analysis. The split between 1.ORI3 and its ancestor lineage 1.ORI2 was dated to the second half of the 19th century. CONCLUSIONS/SIGNIFICANCE: Our results indicate that two independent migrations from the Central Highlands caused the plague outbreaks in Mahajanga during the 1990s, with both introductions occurring during the early 1980s. They happened over a decade before the detection of human cases, thus the pathogen likely survived in wild reservoirs until the spillover to humans was possible. This study demonstrates the value of Bayesian phylogenetics in elucidating the re-emergence of infectious diseases.


Assuntos
Yersinia pestis , Zoonoses , Animais , Humanos , Filogenia , Madagáscar/epidemiologia , Teorema de Bayes , Filogeografia , Yersinia pestis/genética
5.
Curr Biol ; 33(8): 1431-1447.e22, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36958333

RESUMO

Ludwig van Beethoven (1770-1827) remains among the most influential and popular classical music composers. Health problems significantly impacted his career as a composer and pianist, including progressive hearing loss, recurring gastrointestinal complaints, and liver disease. In 1802, Beethoven requested that following his death, his disease be described and made public. Medical biographers have since proposed numerous hypotheses, including many substantially heritable conditions. Here we attempt a genomic analysis of Beethoven in order to elucidate potential underlying genetic and infectious causes of his illnesses. We incorporated improvements in ancient DNA methods into existing protocols for ancient hair samples, enabling the sequencing of high-coverage genomes from small quantities of historical hair. We analyzed eight independently sourced locks of hair attributed to Beethoven, five of which originated from a single European male. We deemed these matching samples to be almost certainly authentic and sequenced Beethoven's genome to 24-fold genomic coverage. Although we could not identify a genetic explanation for Beethoven's hearing disorder or gastrointestinal problems, we found that Beethoven had a genetic predisposition for liver disease. Metagenomic analyses revealed furthermore that Beethoven had a hepatitis B infection during at least the months prior to his death. Together with the genetic predisposition and his broadly accepted alcohol consumption, these present plausible explanations for Beethoven's severe liver disease, which culminated in his death. Unexpectedly, an analysis of Y chromosomes sequenced from five living members of the Van Beethoven patrilineage revealed the occurrence of an extra-pair paternity event in Ludwig van Beethoven's patrilineal ancestry.


Assuntos
Surdez , Pessoas Famosas , Música , Masculino , Humanos , Predisposição Genética para Doença , Genômica , Cabelo
6.
Curr Top Microbiol Immunol ; 439: 305-339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36592250

RESUMO

Coronaviruses have a broad host range and exhibit high zoonotic potential. In this chapter, we describe their genomic organization in terms of encoded proteins and provide an introduction to the peculiar discontinuous transcription mechanism. Further, we present evolutionary conserved genomic RNA secondary structure features, which are involved in the complex replication mechanism. With a focus on computational methods, we review the emergence of SARS-CoV-2 starting with the 2019 strains. In that context, we also discuss the debated hypothesis of whether SARS-CoV-2 was created in a laboratory. We focus on the molecular evolution and the epidemiological dynamics of this recently emerged pathogen and we explain how variants of concern are detected and characterised. COVID-19, the disease caused by SARS-CoV-2, can spread through different transmission routes and also depends on a number of risk factors. We describe how current computational models of viral epidemiology, or more specifically, phylodynamics, have facilitated and will continue to enable a better understanding of the epidemic dynamics of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , SARS-CoV-2/genética , COVID-19/genética , Genoma Viral , Genômica , Estágios do Ciclo de Vida
7.
Viruses ; 14(8)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-36016270

RESUMO

The multi-type birth-death model with sampling is a phylodynamic model which enables the quantification of past population dynamics in structured populations based on phylogenetic trees. The BEAST 2 package bdmm implements an algorithm for numerically computing the probability density of a phylogenetic tree given the population dynamic parameters under this model. In the initial release of bdmm, analyses were computationally limited to trees consisting of up to approximately 250 genetic samples. We implemented important algorithmic changes to bdmm which dramatically increased the number of genetic samples that could be analyzed and which improved the numerical robustness and efficiency of the calculations. Including more samples led to the improved precision of parameter estimates, particularly for structured models with a high number of inferred parameters. Furthermore, we report on several model extensions to bdmm, inspired by properties common to empirical datasets. We applied this improved algorithm to two partly overlapping datasets of the Influenza A virus HA sequences sampled around the world-one with 500 samples and the other with only 175-for comparison. We report and compare the global migration patterns and seasonal dynamics inferred from each dataset. In this way, we show the information that is gained by analyzing the bigger dataset, which became possible with the presented algorithmic changes to bdmm. In summary, bdmm allows for the robust, faster, and more general phylodynamic inference of larger datasets.


Assuntos
Algoritmos , Filogenia , Dinâmica Populacional
8.
Viruses ; 14(7)2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35891501

RESUMO

Viruses are the cause of a considerable burden to human, animal and plant health, while on the other hand playing an important role in regulating entire ecosystems. The power of new sequencing technologies combined with new tools for processing "Big Data" offers unprecedented opportunities to answer fundamental questions in virology. Virologists have an urgent need for virus-specific bioinformatics tools. These developments have led to the formation of the European Virus Bioinformatics Center, a network of experts in virology and bioinformatics who are joining forces to enable extensive exchange and collaboration between these research areas. The EVBC strives to provide talented researchers with a supportive environment free of gender bias, but the gender gap in science, especially in math-intensive fields such as computer science, persists. To bring more talented women into research and keep them there, we need to highlight role models to spark their interest, and we need to ensure that female scientists are not kept at lower levels but are given the opportunity to lead the field. Here we showcase the work of the EVBC and highlight the achievements of some outstanding women experts in virology and viral bioinformatics.


Assuntos
Biologia Computacional , Pesquisadores , Vírus , Europa (Continente) , Feminino , Humanos , Pesquisadores/estatística & dados numéricos , Vírus/genética
9.
Nature ; 606(7915): 718-724, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705810

RESUMO

The origin of the medieval Black Death pandemic (AD 1346-1353) has been a topic of continuous investigation because of the pandemic's extensive demographic impact and long-lasting consequences1,2. Until now, the most debated archaeological evidence potentially associated with the pandemic's initiation derives from cemeteries located near Lake Issyk-Kul of modern-day Kyrgyzstan1,3-9. These sites are thought to have housed victims of a fourteenth-century epidemic as tombstone inscriptions directly dated to 1338-1339 state 'pestilence' as the cause of death for the buried individuals9. Here we report ancient DNA data from seven individuals exhumed from two of these cemeteries, Kara-Djigach and Burana. Our synthesis of archaeological, historical and ancient genomic data shows a clear involvement of the plague bacterium Yersinia pestis in this epidemic event. Two reconstructed ancient Y. pestis genomes represent a single strain and are identified as the most recent common ancestor of a major diversification commonly associated with the pandemic's emergence, here dated to the first half of the fourteenth century. Comparisons with present-day diversity from Y. pestis reservoirs in the extended Tian Shan region support a local emergence of the recovered ancient strain. Through multiple lines of evidence, our data support an early fourteenth-century source of the second plague pandemic in central Eurasia.


Assuntos
Peste , Yersinia pestis , Arqueologia , Cemitérios , DNA Antigo/análise , DNA Bacteriano/análise , História Medieval , Humanos , Quirguistão/epidemiologia , Pandemias/história , Filogenia , Peste/epidemiologia , Peste/história , Peste/microbiologia , Yersinia pestis/classificação , Yersinia pestis/patogenicidade
10.
Proc Natl Acad Sci U S A ; 119(17): e2116722119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35412864

RESUMO

The bacterial pathogen Yersinia pestis gave rise to devastating outbreaks throughout human history, and ancient DNA evidence has shown it afflicted human populations as far back as the Neolithic. Y. pestis genomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to its emergence from a Yersinia pseudotuberculosis-like progenitor; however, the number of reconstructed LNBA genomes are too few to explore its diversity during this critical period of development. Here, we present 17 Y. pestis genomes dating to 5,000 to 2,500 y BP from a wide geographic expanse across Eurasia. This increased dataset enabled us to explore correlations between temporal, geographical, and genetic distance. Our results suggest a nonflea-adapted and potentially extinct single lineage that persisted over millennia without significant parallel diversification, accompanied by rapid dispersal across continents throughout this period, a trend not observed in other pathogens for which ancient genomes are available. A stepwise pattern of gene loss provides further clues on its early evolution and potential adaptation. We also discover the presence of the flea-adapted form of Y. pestis in Bronze Age Iberia, previously only identified in in the Caucasus and the Volga regions, suggesting a much wider geographic spread of this form of Y. pestis. Together, these data reveal the dynamic nature of plague's formative years in terms of its early evolution and ecology.


Assuntos
Genoma Bacteriano , Peste , Yersinia pestis , Criação de Animais Domésticos/história , Animais , DNA Antigo , Variação Genética , História Antiga , Migração Humana/história , Humanos , Filogenia , Peste/epidemiologia , Peste/história , Peste/microbiologia , Yersinia pestis/classificação , Yersinia pestis/genética , Yersinia pestis/isolamento & purificação
11.
Front Microbiol ; 13: 821006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283836

RESUMO

Background: Ethiopia is one of the sub-Saharan countries hit hard by the HIV epidemic. Previous studies have shown that subtype C dominates the Ethiopian HIV-1 epidemic, but the evolutionary and temporal dynamics of HIV-1 in Ethiopia have not been closely scrutinized. Understanding the evolutionary and epidemiological pattern of HIV is vital to monitor the spread, evaluate and implement HIV prevention strategies. Methods: We analyzed 1,276 Ethiopian HIV-1 subtype C polymerase (pol sequences), including 144 newly generated sequences, collected from different parts of the country from 1986 to 2017. We employed state-of-art maximum likelihood and Bayesian phylodynamic analyses to comprehensively describe the evolutionary dynamics of the HIV-1 epidemic in Ethiopia. We used Bayesian phylodynamic models to estimate the dynamics of the effective population size (Ne) and reproductive numbers (Re) through time for the HIV epidemic in Ethiopia. Results: Our analysis revealed that the Ethiopian HIV-1 epidemic originated from two independent introductions at the beginning of the 1970s and 1980s from eastern and southern African countries, respectively, followed by epidemic growth reaching its maximum in the early 1990s. We identified three large clusters with a majority of Ethiopian sequences. Phylodynamic analyses revealed that all three clusters were characterized by high transmission rates during the early epidemic, followed by a decline in HIV-1 transmissions after 1990. Re was high (4-6) during the earlier time of the epidemic but dropped significantly and remained low (Re < 1) after the mid-1990. Similarly, with an expected shift in time, the effective population size (Ne) steadily increased until the beginning of 2000, followed by a decline and stabilization until recent years. The phylodynamic analyses corroborated the modeled UNAIDS incidence and prevalence estimates. Conclusion: The rapid decline in the HIV epidemic took place a decade before introducing antiretroviral therapy in Ethiopia and coincided with early behavioral, preventive, and awareness interventions implemented in the country. Our findings highlight the importance of behavioral interventions and antiretroviral therapy scale-up to halt and maintain HIV transmissions at low levels (Re < 1). The phylodynamic analyses provide epidemiological insights not directly available using standard surveillance and may inform the adjustment of public health strategies in HIV prevention in Ethiopia.

12.
mBio ; 13(2): e0377121, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35343787

RESUMO

Healthcare-associated outbreaks of vancomycin-resistant Enterococcus faecium (VREfm) are a worldwide problem with increasing prevalence. The genomic plasticity of this hospital-adapted pathogen contributes to its efficient spread despite infection control measures. Here, we aimed to identify the genomic and phenotypic determinants of health care-associated transmission of VREfm. We assessed the VREfm transmission networks at the tertiary-care University Hospital of Zurich (USZ) between October 2014 and February 2018 and investigated microevolutionary dynamics of this pathogen. We performed whole-genome sequencing for the 69 VREfm isolates collected during this time frame and assessed the population structure and variability of the vancomycin resistance transposon. Phylogenomic analysis allowed us to reconstruct transmission networks and to unveil external or wider transmission networks undetectable by routine surveillance. Notably, it unveiled a persistent clone, sampled 31 times over a 29-month period. Exploring the evolutionary dynamics of this clone and characterizing the phenotypic consequences revealed the spread of a variant with decreased daptomycin susceptibility and the acquired ability to utilize N-acetyl-galactosamine (GalNAc), one of the primary constituents of the human gut mucins. This nutrient utilization advantage was conferred by a novel plasmid, termed pELF_USZ, which exhibited a linear topology. This plasmid, which was harbored by two distinct clones, was transferable by conjugation. Overall, this work highlights the potential of combining epidemiological, functional genomic, and evolutionary perspectives to unveil adaptation strategies of VREfm. IMPORTANCE Sequencing microbial pathogens causing outbreaks has become a common practice to characterize transmission networks. In addition to the signal provided by vertical evolution, bacterial genomes harbor mobile genetic elements shared horizontally between clones. While macroevolutionary studies have revealed an important role of plasmids and genes encoding carbohydrate utilization systems in the adaptation of Enterococcus faecium to the hospital environment, mechanisms of dissemination and the specific function of many of these genetic determinants remain to be elucidated. Here, we characterize a plasmid providing a nutrient utilization advantage and show evidence for its clonal and horizontal spread at a local scale. Further studies integrating epidemiological, functional genomics, and evolutionary perspectives will be critical to identify changes shaping the success of this pathogen.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Enterococcus faecium/genética , Genômica , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Nutrientes , Plasmídeos/genética , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/genética
13.
Nat Commun ; 12(1): 6009, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650062

RESUMO

By October 2021, 230 million SARS-CoV-2 diagnoses have been reported. Yet, a considerable proportion of cases remains undetected. Here, we propose GInPipe, a method that rapidly reconstructs SARS-CoV-2 incidence profiles solely from publicly available, time-stamped viral genomes. We validate GInPipe against simulated outbreaks and elaborate phylodynamic analyses. Using available sequence data, we reconstruct incidence histories for Denmark, Scotland, Switzerland, and Victoria (Australia) and demonstrate, how to use the method to investigate the effects of changing testing policies on case ascertainment. Specifically, we find that under-reporting was highest during summer 2020 in Europe, coinciding with more liberal testing policies at times of low testing capacities. Due to the increased use of real-time sequencing, it is envisaged that GInPipe can complement established surveillance tools to monitor the SARS-CoV-2 pandemic. In post-pandemic times, when diagnostic efforts are decreasing, GInPipe may facilitate the detection of hidden infection dynamics.


Assuntos
COVID-19/diagnóstico , COVID-19/epidemiologia , Genoma Viral , SARS-CoV-2/genética , COVID-19/história , Europa (Continente)/epidemiologia , História do Século XXI , Humanos , Incidência , Pandemias , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Escócia , Suíça , Vitória
14.
Epidemics ; 36: 100471, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34256273

RESUMO

As multi-drug resistant tuberculosis (MDR-TB) continues to spread, investigating the transmission potential of different drug-resistant strains becomes an ever more pressing topic in public health. While phylogenetic and transmission tree inferences provide valuable insight into possible transmission chains, phylodynamic inference combines evolutionary and epidemiological analyses to estimate the parameters of the underlying epidemiological processes, allowing us to describe the overall dynamics of disease spread in the population. In this study, we introduce an approach to Mycobacterium tuberculosis (M. tuberculosis) phylodynamic analysis employing an existing computationally efficient model to quantify the transmission fitness costs of drug resistance with respect to drug-sensitive strains. To determine the accuracy and precision of our approach, we first perform a simulation study, mimicking the simultaneous spread of drug-sensitive and drug-resistant tuberculosis (TB) strains. We analyse the simulated transmission trees using the phylodynamic multi-type birth-death model (MTBD, (Kühnert et al., 2016)) within the BEAST2 framework and show that this model can estimate the parameters of the epidemic well, despite the simplifying assumptions that MTBD makes compared to the complex TB transmission dynamics used for simulation. We then apply the MTBD model to an M. tuberculosis lineage 4 dataset that primarily consists of MDR sequences. Some of the MDR strains additionally exhibit resistance to pyrazinamide - an important first-line anti-tuberculosis drug. Our results support the previously proposed hypothesis that pyrazinamide resistance confers a transmission fitness cost to the bacterium, which we quantify for the given dataset. Importantly, our sensitivity analyses show that the estimates are robust to different prior distributions on the resistance acquisition rate, but are affected by the size of the dataset - i.e. we estimate a higher fitness cost when using fewer sequences for analysis. Overall, we propose that MTBD can be used to quantify the transmission fitness cost for a wide range of pathogens where the strains can be appropriately divided into two or more categories with distinct properties.


Assuntos
Epidemias , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Filogenia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
15.
Brief Bioinform ; 22(2): 642-663, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33147627

RESUMO

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are free to use and available online, either through web applications or public code repositories. Contact:evbc@unj-jena.de.


Assuntos
COVID-19/prevenção & controle , Biologia Computacional , SARS-CoV-2/isolamento & purificação , Pesquisa Biomédica , COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral , Humanos , Pandemias , SARS-CoV-2/genética
17.
Curr Biol ; 30(19): 3788-3803.e10, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32795443

RESUMO

Syphilis is a globally re-emerging disease, which has marked European history with a devastating epidemic at the end of the 15th century. Together with non-venereal treponemal diseases, like bejel and yaws, which are found today in subtropical and tropical regions, it currently poses a substantial health threat worldwide. The origins and spread of treponemal diseases remain unresolved, including syphilis' potential introduction into Europe from the Americas. Here, we present the first genetic data from archaeological human remains reflecting a high diversity of Treponema pallidum in early modern Europe. Our study demonstrates that a variety of strains related to both venereal syphilis and yaws-causing T. pallidum subspecies were already present in Northern Europe in the early modern period. We also discovered a previously unknown T. pallidum lineage recovered as a sister group to yaws- and bejel-causing lineages. These findings imply a more complex pattern of geographical distribution and etiology of early treponemal epidemics than previously understood.


Assuntos
DNA Antigo/análise , Genoma Bacteriano/genética , Treponema pallidum/genética , Arqueologia , Europa (Continente) , Variação Genética/genética , História do Século XV , História Medieval , Humanos , Sífilis/genética , Sífilis/história , Sífilis/microbiologia , Treponema pallidum/metabolismo , Bouba/genética , Bouba/história , Bouba/microbiologia
18.
Genome Biol ; 21(1): 201, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778135

RESUMO

BACKGROUND: Although tuberculosis accounts for the highest mortality from a bacterial infection on a global scale, questions persist regarding its origin. One hypothesis based on modern Mycobacterium tuberculosis complex (MTBC) genomes suggests their most recent common ancestor followed human migrations out of Africa approximately 70,000 years before present. However, studies using ancient genomes as calibration points have yielded much younger dates of less than 6000 years. Here, we aim to address this discrepancy through the analysis of the highest-coverage and highest-quality ancient MTBC genome available to date, reconstructed from a calcified lung nodule of Bishop Peder Winstrup of Lund (b. 1605-d. 1679). RESULTS: A metagenomic approach for taxonomic classification of whole DNA content permitted the identification of abundant DNA belonging to the human host and the MTBC, with few non-TB bacterial taxa comprising the background. Genomic enrichment enabled the reconstruction of a 141-fold coverage M. tuberculosis genome. In utilizing this high-quality, high-coverage seventeenth-century genome as a calibration point for dating the MTBC, we employed multiple Bayesian tree models, including birth-death models, which allowed us to model pathogen population dynamics and data sampling strategies more realistically than those based on the coalescent. CONCLUSIONS: The results of our metagenomic analysis demonstrate the unique preservation environment calcified nodules provide for DNA. Importantly, we estimate a most recent common ancestor date for the MTBC of between 2190 and 4501 before present and for Lineage 4 of between 929 and 2084 before present using multiple models, confirming a Neolithic emergence for the MTBC.


Assuntos
Genoma Bacteriano , Mycobacterium tuberculosis/genética , África , Teorema de Bayes , História do Século XVII , Humanos , Pulmão , Metagenômica , Mycobacterium tuberculosis/classificação , Filogenia , Filogeografia , Tuberculose/história , Tuberculose/microbiologia
19.
Curr Biol ; 30(11): 2078-2091.e11, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32359431

RESUMO

The forced relocation of several thousand Africans during Mexico's historic period has so far been documented mostly through archival sources, which provide only sparse detail on their origins and lived experience. Here, we employ a bioarchaeological approach to explore the life history of three 16th century Africans from a mass burial at the San José de los Naturales Royal Hospital in Mexico City. Our approach draws together ancient genomic data, osteological analysis, strontium isotope data from tooth enamel, δ13C and δ15N isotope data from dentine, and ethnohistorical information to reveal unprecedented detail on their origins and health. Analyses of skeletal features, radiogenic isotopes, and genetic data from uniparental, genome-wide, and human leukocyte antigen (HLA) markers are consistent with a Sub-Saharan African origin for all three individuals. Complete genomes of Treponema pallidum sub. pertenue (causative agent of yaws) and hepatitis B virus (HBV) recovered from these individuals provide insight into their health as related to infectious disease. Phylogenetic analysis of both pathogens reveals their close relationship to strains circulating in current West African populations, lending support to their origins in this region. The further relationship between the treponemal genome retrieved and a treponemal genome previously typed in an individual from Colonial Mexico highlights the role of the transatlantic slave trade in the introduction and dissemination of pathogens into the New World. Putting together all lines of evidence, we were able to create a biological portrait of three individuals whose life stories have long been silenced by disreputable historical events.


Assuntos
DNA Antigo/análise , Pessoas Escravizadas/história , Nível de Saúde , Hepatite B/história , Bouba/história , Adulto , Arqueologia , População Negra/história , Vírus da Hepatite B/isolamento & purificação , História do Século XVI , Humanos , Masculino , México , Treponema/isolamento & purificação , Adulto Jovem
20.
Nat Ecol Evol ; 4(3): 324-333, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094538

RESUMO

It has been hypothesized that the Neolithic transition towards an agricultural and pastoralist economy facilitated the emergence of human-adapted pathogens. Here, we recovered eight Salmonella enterica subsp. enterica genomes from human skeletons of transitional foragers, pastoralists and agropastoralists in western Eurasia that were up to 6,500 yr old. Despite the high genetic diversity of S. enterica, all ancient bacterial genomes clustered in a single previously uncharacterized branch that contains S. enterica adapted to multiple mammalian species. All ancient bacterial genomes from prehistoric (agro-)pastoralists fall within a part of this branch that also includes the human-specific S. enterica Paratyphi C, illustrating the evolution of a human pathogen over a period of 5,000 yr. Bacterial genomic comparisons suggest that the earlier ancient strains were not host specific, differed in pathogenic potential and experienced convergent pseudogenization that accompanied their downstream host adaptation. These observations support the concept that the emergence of human-adapted S. enterica is linked to human cultural transformations.


Assuntos
Salmonella enterica , Animais , Genoma Bacteriano , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...