Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Monit Assess ; 196(6): 585, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809286

RESUMO

The Niger Delta in Nigeria is a complex and heavily contaminated area with over 150,000 interconnected contaminated sites. This intricate issue is compounded by the region's strong hydrological processes and high-energy environment, necessitating a science-based approach for effective contamination assessment and management. This study introduces the concept of sub-catchment contamination assessment and management, providing an overarching perspective rather than addressing each site individually. A description of the sub-catchment delineation process using the digital elevation model data from an impacted area within the Delta is provided. Additionally, the contamination status from the delineated sub-catchment is reported. Sediment, surface water and groundwater samples from the sub-catchment were analyzed for total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), respectively. Surface sediment TPH concentrations ranged from 129 to 20,600 mg/kg, with subsurface (2-m depth) concentrations from 15.5 to 729 mg/kg. PAHs in surface and subsurface sediment reached 9.55 mg/kg and 0.46 mg/kg, respectively. Surface water exhibited TPH concentrations from 10 to 620 mg/L, while PAHs ranged from below detection limits to 1 mg/L. Groundwater TPH concentrations spanned 3 to 473 mg/L, with total PAHs varying from below detection limits to 0.28 mg/L. These elevated TPH and PAH levels indicate extensive petroleum contamination in the investigated sediment and water environment. Along with severe impacts on large areas of mangroves and wetlands, comparison of TPH and PAH concentrations with sediment and water quality criteria found 54 to 100% of stations demonstrated exceedances, suggesting adverse biological effects on aquatic and sediment biota are likely occurring.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Água Subterrânea , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Nigéria , Poluentes Químicos da Água/análise , Poluição por Petróleo/análise , Sedimentos Geológicos/química , Água Subterrânea/química
3.
Environ Sci Pollut Res Int ; 30(41): 94312-94333, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37531049

RESUMO

Biochemical oxygen demand (BOD) is one of the most important parameters used for water quality assessment. Alternative methods are essential for accurately prediction of this parameter because the traditional method in predicting the BOD is time-consuming and it is inaccurate due to inconstancies in microbial multiplicity. In this study, the applicability of four hybrid neuro-fuzzy (ANFIS) methods, ANFIS with genetic algorithm (GA), ANFIS with particle swarm optimization (PSO), ANFIS with sine cosine algorithm (SCA), and ANFIS with marine predators algorithm (MPA), was investigated in predicting BOD using distinct input combinations such as potential of hydrogen (pH), dissolved oxygen (DO), electrical conductivity (EC), water temperature (WT), suspended solids (SS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (T-P) acquired from two river stations, Gongreung and Gyeongan, South Korea. The applicability of multi-variate adaptive regression spline (MARS) in determination of the best input combination was examined. The ANFIS-MPA was found to be the best model with the lowest root mean square error and mean absolute error and the highest determination coefficient. It improved the root mean square error of ANFIS-PSO, ANFIS-GA, and ANFIS-SCA models by 13.8%, 12.1%, and 6.3% for Gongreung Station and by 33%, 25%, and 6.3% for Gyeongan Station in the test stage, respectively.


Assuntos
Algoritmos , Lógica Fuzzy , Qualidade da Água , Análise da Demanda Biológica de Oxigênio , Oxigênio/análise
5.
Ground Water ; 46(3): 450-61, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18194313

RESUMO

A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.


Assuntos
Clima Desértico , Desastres , Monitoramento Ambiental , Movimentos da Água , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Algoritmos , Chuva , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...