Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Math Neurosci ; 9(1): 9, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31728676

RESUMO

Recovering brain connectivity from tract tracing data is an important computational problem in the neurosciences. Mesoscopic connectome reconstruction was previously formulated as a structured matrix regression problem (Harris et al. in Neural Information Processing Systems, 2016), but existing techniques do not scale to the whole-brain setting. The corresponding matrix equation is challenging to solve due to large scale, ill-conditioning, and a general form that lacks a convergent splitting. We propose a greedy low-rank algorithm for the connectome reconstruction problem in very high dimensions. The algorithm approximates the solution by a sequence of rank-one updates which exploit the sparse and positive definite problem structure. This algorithm was described previously (Kressner and Sirkovic in Numer Lin Alg Appl 22(3):564-583, 2015) but never implemented for this connectome problem, leading to a number of challenges. We have had to design judicious stopping criteria and employ efficient solvers for the three main sub-problems of the algorithm, including an efficient GPU implementation that alleviates the main bottleneck for large datasets. The performance of the method is evaluated on three examples: an artificial "toy" dataset and two whole-cortex instances using data from the Allen Mouse Brain Connectivity Atlas. We find that the method is significantly faster than previous methods and that moderate ranks offer a good approximation. This speedup allows for the estimation of increasingly large-scale connectomes across taxa as these data become available from tracing experiments. The data and code are available online.

2.
Numer Math (Heidelb) ; 138(2): 301-330, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29391650

RESUMO

This paper introduces a new algorithm for solving large-scale continuous-time algebraic Riccati equations (CARE). The advantage of the new algorithm is in its immediate and efficient low-rank formulation, which is a generalization of the Cholesky-factored variant of the Lyapunov ADI method. We discuss important implementation aspects of the algorithm, such as reducing the use of complex arithmetic and shift selection strategies. We show that there is a very tight relation between the new algorithm and three other algorithms for CARE previously known in the literature-all of these seemingly different methods in fact produce exactly the same iterates when used with the same parameters: they are algorithmically different descriptions of the same approximation sequence to the Riccati solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...