Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Brain Dis ; 37(4): 927-944, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064868

RESUMO

Insulin resistance (IR) and accumulation of amyloid beta (Aß) oligomers are potential causative factor for Alzheimer's Disease (AD). Simultaneously, enhanced clearance level of these oligomers through autophagy activation bring novel insights into their therapeutic paradigm. Autophagy activation is negatively correlated with mammalian target of rapamycin (mTOR) and dysregulated mTOR level due to epigenetic alterations can further culminate towards AD pathogenesis. Therefore, in the current study we explored the neuroprotective efficacy of rapamycin (rapa) and vorinostat (vori) in-vitro and in-vivo. Aß1-42 treated SH-SY5Y cells were exposed to rapa (20 µM) and vori (4 µM) to analyse mRNA expression of amyloid precursor protein (APP), brain derived neurotrophic factor (BDNF), glial cell derived neurotrophic factor (GDNF), neuronal growth factor (NGF), beclin-1, microtubule-associated protein 1A/1B-light chain 3-phosphatidylethanolamine conjugate (LC3), lysosome-associated membrane protein 2 (LAMP2) and microtubule associated protein 2 (MAP2). In order to develop IR condition, rats were fed a high fat diet (HFD) for 8 weeks and then subjected to intracerebroventricular Aß1-42 administration. Subsequently, their treatment was initiated with rapa (1 mg/kg, i.p.) and vori (50 mg/kg, i.p.) once daily for 28 days. Morris water maze was performed to govern cognitive impairment followed by sacrification for subsequent mRNA, biochemical, western blot and histological estimations. For all the measured parameters, a significant improvement was observed amongst the combination treatment group in contrast to that of the HFD + Aß1-42 group and that of the groups treated with the drugs alone. Outcomes of the present study thus suggest that combination therapy with rapa and vori provide a prospective therapeutic approach to ameliorate AD symptoms exacerbated by IR.


Assuntos
Doença de Alzheimer , Resistência à Insulina , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Autofagia , Epigênese Genética , Resistência à Insulina/fisiologia , Mamíferos/metabolismo , RNA Mensageiro , Ratos , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
2.
ACS Chem Neurosci ; 12(14): 2643-2660, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34197084

RESUMO

Therapeutic options for Parkinson's disease (PD) are limited to a symptomatic approach, making it a global threat. Targeting aggregated alpha-synuclein (α-syn) clearance is a gold standard for ameliorating PD pathology, bringing autophagy into the limelight. Expression of autophagy related genes are under the regulation by histone modifications, however, its relevance in PD is yet to be established. Here, preformed fibrillar form (PFF) of α-syn was used to induce PD in wistar rats, which were thereafter subjected to treatment with trehalose (tre, 4g/kg, orally), a potent autophagy inducer and sodium butyrate (SB, 300 mg/kg, orally), a pan histone deacetylase inhibitor alone as well as in combination. The combination treatment significantly reduced motor deficits as evidenced after rotarod, narrow beam walk, and open field tests. Novel object location and recognition tests were performed to govern cognitive abnormality associated with advanced stage PD, which was overcome by the combination treatment. Additionally, with the combination, the level of pro-inflammatory cytokines were significantly reduced, along with elevated levels of dopamine and histone H3 acetylation. Further, mRNA analysis revealed that levels of certain autophagy related genes and proteins implicated in PD pathogenesis significantly improved after administration of both tre and SB. Immunofluorescence and H&E staining in the substantia nigra region mirrored a potential improvement after treatment with both tre and SB. Therefore, outcomes of the present study were adequate to prove that combinatorial efficacy with tre and SB may prove to be a formidable insight into ameliorating PD exacerbated by PFF α-syn as compared to its individual efficacy.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Ácido Butírico/farmacologia , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Ratos , Ratos Wistar , Trealose/farmacologia , alfa-Sinucleína
3.
ACS Chem Neurosci ; 12(9): 1528-1541, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33860663

RESUMO

Anomalies in brain insulin signaling have been demonstrated to be involved in the pathology of Alzheimer disease (AD). In this context, the neuroprotective efficacy of an insulin sensitizer, rosiglitazone, has been confirmed in our previous study. In the present study, we hypothesize that a combination of an epigenetic modulator, vorinostat, along with rosiglitazone can impart improved gene expression of neurotrophic factors and attenuate biochemical and cellular alteration associated with AD mainly by loading these drugs in a surface modified nanocarrier system for enhanced bioavailability and enhanced therapeutic efficacy. Hence, in this study, rosiglitazone and vorinostat were loaded onto a poloxamer stabilized polymeric nanocarrier system and administered to mice in the intracerebroventricular streptozotocin (3 mg/kg) induced model of AD. Treatment with the free drug combination (rosiglitazone 5 mg/kg, vorinostat 25 mg/kg) for 3 weeks attenuated the behavioral, biochemical, and cellular alterations as compared to either treatment alone (rosiglitazone 10 mg/kg, vorinostat 50 mg/kg). Further, the coencapsulated nanoformulation (rosiglitazone 5 mg/kg, vorinostat 25 mg/kg) exerted better neuroprotective efficacy than the free drug combination as evidenced by improved behavioral outcome, reduced oxidative stress, and elevated levels of neurotrophic factors. In conclusion, the synergistic neuroprotective efficacy of rosiglitazone and vorinostat has been increased through the poloxamer stabilized polymeric nanocarrier system.


Assuntos
Doença de Alzheimer , Nanopartículas , Tiazolidinedionas , Doença de Alzheimer/tratamento farmacológico , Animais , Camundongos , PPAR gama , Rosiglitazona/farmacologia , Estreptozocina , Tiazolidinedionas/farmacologia , Vorinostat/farmacologia
4.
Neurosci Lett ; 753: 135865, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33812929

RESUMO

Parkinson disease (PD) is a progressive movement functionality disorder resulting in tremor and inability to execute voluntary functions combined with the preponderant non-motor disturbances encompassing constipation and gastrointestinal irritation. Despite continued research, the pathogenesis of PD is not yet clear. The available class of drugs for effective symptomatic management of PD includes a combination of levodopa and carbidopa. In recent past, the link between gut with PD has been explored. According to recent preclinical evidence, pathogens such as virus or bacterium may initiate entry into the gut via the nasal cavity that may aggravate lewy pathology in the gut that eventually propagates and progresses towards the brain via the vagus nerve resulting in the prodromal non-motor symptoms. Additionally, experimental evidence also suggests that alpha-synuclein misfolding commences at a very early stage in the gut and is transported via the vagus nerve prior to seeding PD pathology in the brain. However, this progression and resultant deterioration of the neurones can effectively be altered by an autophagy inducer, Trehalose, although the mechanism behind it is still enigmatic. Hence, this review will mainly focus on analysing the basic components of the gut that might be responsible for aggravating lewy pathology, the mediator(s) responsible for transmission of PD pathology from gut to brain and the important role of trehalose in ameliorating gut dysbiosis related PD complications that would eventually pave the way for therapeutic management of PD.


Assuntos
Autofagia , Encéfalo/patologia , Disbiose/complicações , Microbioma Gastrointestinal/fisiologia , Doença de Parkinson/metabolismo , Animais , Modelos Animais de Doenças , Disbiose/metabolismo , Disbiose/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Doença de Parkinson/microbiologia , Doença de Parkinson/patologia , Agregados Proteicos , Trealose/metabolismo , alfa-Sinucleína/metabolismo
5.
Neurosci Lett ; 750: 135769, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33636285

RESUMO

Continual strategies to devise a complete therapeutic cure for neurodegenerative conditions has been a challenge, majorly due to the presence of blood brain barrier. Lack of targeted delivery in order to minimize loss of dopamine (DA) neurones has been a major challenge to overcome anomalies in Parkinson Disease (PD). PD is a neuromotor degenerative disorder deteriorating motor coordination in affected individuals. Recent research has highlighted the use of lentiviral vectors (LVs) for selective delivery of neuroprotective substance for complete halt of disease progression in PD. LVs have the ability to infect both dividing and non-dividing cells along with non-encoding capability of viral protein that might elicit an immune response. This review will mainly focus on understanding the basic mechanism of action of LVs and its therapeutic aid in PD.


Assuntos
Terapia Genética/métodos , Lentivirus/genética , Doença de Parkinson/terapia , Transfecção/métodos , Animais , Humanos , Doença de Parkinson/genética
6.
Neurotox Res ; 39(2): 240-255, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32683650

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder imposing great threat to an individual's cognitive capability. Mounting evidence suggests that type 2 diabetes mellitus (T2DM) and AD is closely associated with impaired insulin signalling and glucose metabolism in the brain. Member of the peroxisome proliferator-activated receptor (PPAR) family, especially PPARγ agonists, has been well known for their insulin-sensitizing actions, but due to low water solubility, poor penetration into the brain and associated toxicity limit their use clinically. Therefore, this study has been undertaken to investigate the neuroprotective potential of rosiglitazone embedded nanocarrier system on streptozotocin (STZ) induced mice model of AD. In vitro neuroprotective efficacy of rosiglitazone was determined on SH-SY5Y cells by assessing the messenger ribonulceic  acid (mRNA) expression level of genes implicated for cognitive function. AD in mice was developed by intracerebroventricular (ICV) administration of STZ (3 mg/kg) directly into the lateral ventricles of the mice brain. The cognitive parameters and mRNA expression levels were evaluated after treatment with the free form of rosiglitazone as well as its nano-formulated form. It was observed that rosiglitazone elicits neuroprotection on SH-SY5Y cells as evidenced from the upregulation of genes such as cyclic-AMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), glial cell derived neurotrophic factor (GDNF), and nerve growth factor (NGF), which are involved in cognitive functions. Further, the nano-formulated rosiglitazone induced better neuroprotective efficacy than its free drug treatment on animal model of AD as evidenced by attenuating the behavioural and cognitive abnormalities, oxido-nitrosative stress and pro-inflammatory cytokines, i.e. tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6a) along with improved antioxidant enzymes (superoxide dismutase (SOD), reduced glutathione (GSH), acetylcholine, neuronal density and expression of CREB, BDNF, GDNF and NGF in the hippocampal region. Based on the results, it can be concluded that rosiglitazone nanoformulation exerts strong neuroprotection via increasing the mRNA expression of growth factors and inhibition of oxidative stress, and neuroinflammation eventually prevents neuronal injury in AD.


Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Rosiglitazona/administração & dosagem , Estreptozocina/toxicidade , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Humanos , Masculino
7.
Biomed Pharmacother ; 127: 110145, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32361164

RESUMO

Parkinson disease (PD) is the second common neurodegenerative disorder after Alzheimer's disease (AD). The predominant pathological hallmark is progressive loss of dopaminergic (DA) neurones in the substantia nigra (SN) complicated by aggregation of misfolded forms of alpha-synuclein (α-syn). α-syn is a cytosolic synaptic protein localized in the presynaptic neuron under normal circumstances. What drives misfolding of this protein is largely unknown. However, recent studies suggest that autophagy might be an important risk factor for contributing towards PD. Autophagy is an evolutionarily conserved mechanism that causes the clearance or degradation of misfolded, mutated and damaged proteins, organelles etc. However, in an aging individual this process might deteriorate which could possibly lead to the accumulation of damaged proteins. Hence, autophagy modulation might provide some interesting cues for the treatment of PD. Additionally, Fibroblast growth factor 21 (FGF21) which is known for its role as a potent regulator of glucose and energy metabolism has also proved to be neuroprotective in various neurodegenerative conditions possibly via mediation of autophagy.


Assuntos
Autofagia/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Doença de Parkinson/etiologia , Fator 4 Ativador da Transcrição/fisiologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Doença de Parkinson/patologia , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...