Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710072

RESUMO

The functional properties of complex oxides, including magnetism and ferroelectricity, are closely linked to subtle structural distortions. Ultrafast optical excitations provide the means to manipulate structural features and ultimately to affect the functional properties of complex oxides with picosecond-scale precision. We report that the lattice expansion of multiferroic BiFeO3 following above-bandgap optical excitation leads to distortion of the oxygen octahedral rotation (OOR) pattern. The continuous coupling between OOR and strain was probed using time-resolved X-ray free-electron laser diffraction with femtosecond time resolution. Density functional theory calculations predict a relationship between the OOR and the elastic strain consistent with the experiment, demonstrating a route to employing this approach in a wider range of systems. Ultrafast control of the functional properties of BiFeO3 thin films is enabled by this approach because the OOR phenomena are related to ferroelectricity, and via the Fe-O-Fe bond angles, the superexchange interaction between Fe atoms.

2.
Dalton Trans ; 50(42): 15359-15369, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34642733

RESUMO

Solid state compounds which exhibit non-centrosymmetric crystal structures are of great interest due to the physical properties they can exhibit. The 'hybrid improper' mechanism - in which two non-polar distortion modes couple to, and stabilize, a further polar distortion mode, yielding an acentric crystal structure - offers opportunities to prepare a range of novel non-centrosymmetric solids, but examples of compounds exhibiting acentric crystal structures stabilized by this mechanism are still relatively rare. Here we describe a series of bismuth-containing layered perovskite oxide phases, RbBiNb2O7, LiBiNb2O7 and NaBiNb2O7, which have structural frameworks compatible with hybrid-improper ferroelectricity, but also contain Bi3+ cations which are often observed to stabilize acentric crystal structures due to their 6s2 electronic configurations. Neutron powder diffraction analysis reveals that RbBiNb2O7 and LiBiNb2O7 adopt polar crystal structures (space groups I2cm and B2cm respectively), compatible with stabilization by a trilinear coupling of non-polar and polar modes. The Bi3+ cations present are observed to enhance the magnitude of the polar distortions of these phases, but are not the primary driver for the acentric structure, as evidenced by the observation that replacing the Bi3+ cations with Nd3+ cations does not change the structural symmetry of the compounds. In contrast the non-centrosymmetric, but non-polar structure of NaBiNb2O7 (space group P212121) differs significantly from the centrosymmetric structure of NaNdNb2O7, which is attributed to a second-order Jahn-Teller distortion associated with the presence of the Bi3+ cations.

3.
J Phys Condens Matter ; 34(3)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34653999

RESUMO

We use theory and first-principles calculations to investigate how structural changes induced by ultrafast optical excitation of infrared-active phonons change with hydrostatic pressure in LaAlO3. Our calculations show that the observed structural changes are sensitive to pressure, with the largest changes occurring at pressures near the boundary between the cubic perovskite and rhombohedral phases. We rationalize our findings by defining a figure of merit that depends only on intrinsic materials quantities, and show that the peak response near the phase boundary is dictated by different microscopic materials properties depending on the particular phonon mode being excited. Our work demonstrates how it is possible to systematically identify materials that may exhibit particularly large changes in structure and properties due to optical excitation of infrared-active phonons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...