Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202400124, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632079

RESUMO

Cyclotides are cyclic peptides that are promising scaffolds for the design of drug candidates and chemical tools. However, despite there being hundreds of reported cyclotides, drug design studies have commonly focussed on a select few prototypic examples. Here, we explored whether ancestral sequence reconstruction could be used to generate new cyclotides for further optimization. We show that the reconstructed 'pseudo-ancestral' sequences, named Ancy-m (for the ancestral cyclotide of the Möbius sub-family) and Ancy-b (for the bracelet sub-family), have well-defined structures like their extant members, comprising the core structural feature of a cyclic cystine knot. This motif underpins efforts to re-engineer cyclotides for agrochemical and therapeutic applications. We further show that the reconstructed sequences are resistant to temperatures approaching boiling, bind to phosphatidyl-ethanolamine lipid bilayers at micromolar affinity, and inhibit the growth of insect cells at inhibitory concentrations in the micromolar range. Interestingly, the Ancy-b cyclotide had a higher oxidative folding yield than its comparator cyclotide cyO2, which belongs to the bracelet cyclotide subfamily known to be notoriously difficult to fold. Overall, this study provides new cyclotide sequences not yet found naturally that could be valuable starting points for the understanding of cyclotide evolution and for further optimization as drug leads.

2.
J Biol Chem ; 300(3): 105682, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272233

RESUMO

Cyclotides are plant-derived disulfide-rich cyclic peptides that have a natural function in plant defense and potential for use as agricultural pesticides. Because of their highly constrained topology, they are highly resistant to thermal, chemical, or enzymatic degradation. However, the stability of cyclotides at alkaline pH for incubation times of longer than a few days is poorly studied but important since these conditions could be encountered in the environment, during storage or field application as insecticides. In this study, kalata B1 (kB1), the prototypical cyclotide, was engineered to improve its long-term stability and retain its insecticidal activity via point mutations. We found that substituting either Asn29 or Gly1 to lysine or leucine increased the stability of kB1 by twofold when incubated in an alkaline buffer (pH = 9.0) for 7 days, while retaining its insecticidal activity. In addition, when Gly1 was replaced with lysine or leucine, the mutants could be cyclized using an asparaginyl endopeptidase, in vitro with a yield of ∼90% within 5 min. These results demonstrate the potential to manufacture kB1 mutants with increased stability and insecticidal activity recombinantly or in planta. Overall, the discovery of mutants of kB1 that have enhanced stability could be useful in leading to longer term activity in the field as bioinsecticides.


Assuntos
Ciclotídeos , Inseticidas , Oldenlandia , Ciclotídeos/genética , Ciclotídeos/farmacologia , Ciclotídeos/química , Inseticidas/química , Inseticidas/farmacologia , Leucina , Lisina/genética , Mutagênese , Proteínas de Plantas/metabolismo , Oldenlandia/química , Estabilidade Proteica , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos
3.
Biochim Biophys Acta Biomembr ; 1866(3): 184268, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38191035

RESUMO

Kalata B1 (kB1), a naturally occurring cyclotide has been shown experimentally to bind lipid membranes that contain phosphatidylethanolamine (PE) phospholipids. Here, molecular dynamics simulations were used to explore its interaction with two phospholipids, palmitoyloleoylphosphatidylethanolamine (POPE), palmitoyloleoylphosphatidylcholine (POPC), and a heterogeneous membrane comprising POPC/POPE (90:10), to understand the basis for the selectivity of kB1 towards PE phospholipids. The simulations showed that in the presence of only 10 % POPE lipid, kB1 forms a stable binding complex with membrane bilayers. An ionic interaction between the E7 carboxylate group of kB1 and the ammonium group of PE headgroups consistently initiates binding of kB1 to the membrane. Additionally, stable noncovalent interactions such as hydrogen bonding (E7, T8, V10, G11, T13 and N15), cation-π (W23), and CH-π (W23) interactions between specific residues of kB1 and the lipid membrane play an important role in stabilizing the binding. These findings are consistent with a structure-activity relationship study on kB1 where lysine mutagenesis on the bioactive and hydrophobic faces of the peptide abolished membrane-dependent bioactivities. In summary, our simulations suggest the importance of residue E7 (in the bioactive face) in enabling kB1 to recognize and bind selectively to PE-containing phospholipids bilayers through ionic and hydrogen bonding interactions, and of W23 (in the hydrophobic face) for the association and insertion of kB1 into the lipid bilayer through cation-π and CH-π interactions. Overall, this work enhances our understanding of the molecular basis of the membrane binding and bioactivity of this prototypic cyclotide.


Assuntos
Ciclotídeos , Fosfolipídeos , Simulação de Dinâmica Molecular , Fosfatidiletanolaminas/química , Ciclotídeos/química , Ciclotídeos/metabolismo , Cátions
4.
J Med Chem ; 67(2): 1197-1208, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38174919

RESUMO

Peptides are promising drug modalities that can modulate protein-protein interactions, but their application is hampered by their limited ability to reach intracellular targets. Here, we improved the cytosolic delivery of a peptide blocking p53:MDM2/X interactions using a cyclotide as a stabilizing scaffold. We applied several design strategies to improve intracellular delivery and found that the conjugation of the lead cyclotide to the cyclic cell-penetrating peptide cR10 was the most effective. Conjugation allowed cell internalization at micromolar concentration and led to elevated intracellular p53 levels in A549, MCF7, and MCF10A cells, as well as inducing apoptosis in A549 cells without causing membrane disruption. The lead peptide had >35-fold improvement in inhibitory activity and increased cellular uptake compared to a previously reported cyclotide p53 activator. In summary, we demonstrated the delivery of a large polar cyclic peptide in the cytosol and confirmed its ability to modulate intracellular protein-protein interactions involved in cancer.


Assuntos
Peptídeos Penetradores de Células , Ciclotídeos , Neoplasias , Humanos , Ciclotídeos/farmacologia , Ciclotídeos/metabolismo , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo
5.
Chemistry ; 30(7): e202302909, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910861

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are drug targets for neurological diseases and disorders, but selective targeting of the large number of nAChR subtypes is challenging. Marine cone snail α-conotoxins are potent blockers of nAChRs and some have been engineered to achieve subtype selectivity. This engineering effort would benefit from rapid computational methods able to predict mutational energies, but current approaches typically require high-resolution experimental structures, which are not widely available for α-conotoxin complexes. Herein, five mutational energy prediction methods were benchmarked using crystallographic and mutational data on two acetylcholine binding protein/α-conotoxin systems. Molecular models were developed for six nAChR subtypes in complex with five α-conotoxins that were studied through 150 substitutions. The best method was a combination of FoldX and molecular dynamics simulations, resulting in a predictive Matthews Correlation Coefficient (MCC) of 0.68 (85 % accuracy). Novel α-conotoxin mutants designed using this method were successfully validated by experimental assay with improved pharmaceutical properties. This work paves the way for the rapid design of subtype-specific nAChR ligands and potentially accelerated drug development.


Assuntos
Conotoxinas , Receptores Nicotínicos , Conotoxinas/química , Receptores Nicotínicos/genética , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Antagonistas Nicotínicos/química , Mutação , Simulação de Dinâmica Molecular
6.
J Med Chem ; 66(14): 10092-10107, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37464764

RESUMO

αO-Conotoxin GeXIVA is a selective α9α10 nicotinic acetylcholine receptor (nAChR) inhibitor displaying two disulfide bonds that can form three isomers. The bead (GeXIVA[1,2]) and ribbon (GeXIVA[1,4]) isomers possess the highest activity on rat and human α9α10 nAChRs. However, the molecular mechanism by which they inhibit the α9α10 nAChR is unknown. Here, an alanine scan of GeXIVA was used to elucidate key interactions between the peptides and the α9α10 nAChR. The majority of GeXIVA[1,2] analogues preserved affinity at α9α10 nAChR, but [R17A]GeXIVA[1,2] enhanced selectivity on the α9α10 nAChR. The I23A replacement of GeXIVA[1,4] increased activity at both rat and human α9α10 nAChRs by 10-fold. Surprisingly, these results do not support the molecular model of an interaction in the orthosteric binding site proposed previously, but rather may involve allosteric coupling with the voltage-sensitive domain of the α9α10 nAChR. These results could help to guide further development of GeXIVA analogues as analgesics.


Assuntos
Conotoxinas , Receptores Nicotínicos , Ratos , Humanos , Animais , Conotoxinas/química , Sítios de Ligação , Receptores Nicotínicos/metabolismo , Analgésicos/química , Antagonistas Nicotínicos/química , Relação Estrutura-Atividade
7.
Mar Drugs ; 21(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36976203

RESUMO

The venom of marine cone snails is mainly composed of peptide toxins called conopeptides, among which conotoxins represent those that are disulfide-rich. Publications on conopeptides frequently state that conopeptides attract considerable interest for their potent and selective activity, but there has been no analysis yet that formally quantifies the popularity of the field. We fill this gap here by providing a bibliometric analysis of the literature on cone snail toxins from 2000 to 2022. Our analysis of 3028 research articles and 393 reviews revealed that research in the conopeptide field is indeed prolific, with an average of 130 research articles per year. The data show that the research is typically carried out collaboratively and worldwide, and that discoveries are truly a community-based effort. An analysis of the keywords provided with each article revealed research trends, their evolution over the studied period, and important milestones. The most employed keywords are related to pharmacology and medicinal chemistry. In 2004, the trend in keywords changed, with the pivotal event of that year being the approval by the FDA of the first peptide toxin drug, ziconotide, a conopeptide, for the treatment of intractable pain. The corresponding research article is among the top ten most cited articles in the conopeptide literature. From the time of that article, medicinal chemistry aiming at engineering conopeptides to treat neuropathic pain ramped up, as seen by an increased focus on topological modifications (e.g., cyclization), electrophysiology, and structural biology.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Caramujo Conus/química , Conotoxinas/farmacologia , Conotoxinas/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Caramujos
8.
J Med Chem ; 66(3): 2020-2031, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36682014

RESUMO

α6ß4 nicotinic acetylcholine receptors (nAChRs) are expressed in the central and peripheral nervous systems, but their functions are not fully understood, largely because of a lack of specific ligands. Here, we characterized a novel α-conotoxin, LvIC, and designed a series of analogues to probe structure-activity relationships at the α6ß4 nAChR. The potency and selectivity of these conotoxins were tested using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes. One of the analogues, [D1G,ΔQ14]LvIC, potently blocked α6/α3ß4 nAChRs (α6/α3 is a chimera) with an IC50 of 19 nM, with minimal activity at other nAChR subtypes, including the structurally similar α6/α3ß2ß3 and α3ß4 subtypes. Using NMR, molecular docking, and receptor mutation, structure-activity relationships of [D1G,ΔQ14]LvIC at the α6/α3ß4 nAChR were defined. It is a potent and specific antagonist of α6ß4 nAChRs that could potentially serve as a novel molecular probe to explore α6ß4 nAChR-related neurophysiological and pharmacological functions.


Assuntos
Conotoxinas , Receptores Nicotínicos , Ratos , Animais , Conotoxinas/química , Simulação de Acoplamento Molecular , Oócitos , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/química , Receptores Nicotínicos/química , Xenopus laevis
9.
Cell Mol Life Sci ; 79(12): 606, 2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36436181

RESUMO

Lactate dehydrogenase 5 (LDH5) is overexpressed in many cancers and is a potential target for anticancer therapy due to its role in aerobic glycolysis. Small-molecule drugs have been developed as competitive inhibitors to bind substrate/cofactor sites of LDH5, but none reached the clinic to date. Recently, we designed the first LDH5 non-competitive inhibitor, cGmC9, a peptide that inhibits protein-protein interactions required for LDH5 enzymatic activity. Peptides are gaining a large interest as anticancer agents to modulate intracellular protein-protein interactions not targetable by small molecules; however, delivery of these peptides to the cytosol, where LDH5 and other anticancer targets are located, remains a challenge for this class of therapeutics. In this study, we focused on the cellular internalisation of cGmC9 to achieve LDH5 inhibition in the cytosol. We designed cGmC9 analogues and compared them for LDH5 inhibition, cellular uptake, toxicity, and antiproliferation against a panel of cancer cell lines. The lead analogue, [R/r]cGmC9, specifically impairs proliferation of cancer cell lines with high glycolytic profiles. Proteomics analysis showed expected metabolic changes in response to decreased glycolysis. This is the first report of a peptide-based LDH5 inhibitor able to modulate cancer metabolism and kill cancer cells that are glycolytic. The current study demonstrates the potential of using peptides as inhibitors of intracellular protein-protein interactions relevant for cancer pathways and shows that active peptides can be rationally designed to improve their cell permeation.


Assuntos
L-Lactato Desidrogenase , Neoplasias , Humanos , Lactato Desidrogenase 5 , Peptídeos/farmacologia , Neoplasias/tratamento farmacológico , Proliferação de Células
10.
J Med Chem ; 65(19): 12956-12969, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36167503

RESUMO

In this work, cysteine staples were used as a late-stage functionalization strategy to diversify peptides and build conjugates targeting the melanocortin G-protein-coupled receptors [melanocortin receptor-1 (MC1R) and MC3R-MC5R]. Monocyclic and bicyclic agonists based on sunflower trypsin inhibitor-1 were used to generate a selection of stapled peptides that were evaluated for binding (pKi) and functional activation (pEC50) of the melanocortin receptor subtypes. Stapled peptides generally had improved activity, with aromatic stapled peptides yielding selective MC1R agonists, including a xylene-stapled peptide (2) with an EC50 of 1.9 nM for MC1R and >150-fold selectivity for MC3R and MC4R. Selected stapled peptides were further functionalized with linkers and payloads, generating a series of conjugated peptides with potent MC1R activity, including one pyridazine-functionalized peptide (21) with picomolar activity at MC1R (Ki 58 pM; EC50 < 9 pM). This work demonstrates that staples can be used as modular synthetic tools to tune potency and selectivity in peptide-based drug design.


Assuntos
Piridazinas , Receptor Tipo 1 de Melanocortina , Cisteína , Melanocortinas , Peptídeos/farmacologia , Receptor Tipo 1 de Melanocortina/agonistas , Receptor Tipo 3 de Melanocortina , Receptor Tipo 4 de Melanocortina , Receptores de Melanocortina/metabolismo , Relação Estrutura-Atividade , Xilenos
11.
J Biol Chem ; 298(10): 102413, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007611

RESUMO

Cyclotides and acyclic versions of cyclotides (acyclotides) are peptides involved in plant defense. These peptides contain a cystine knot motif formed by three interlocked disulfide bonds, with the main difference between the two classes being the presence or absence of a cyclic backbone, respectively. The insecticidal activity of cyclotides is well documented, but no study to date explores the insecticidal activity of acyclotides. Here, we present the first in vivo evaluation of the insecticidal activity of acyclotides from Rinorea bengalensis on the vinegar fly Drosophila melanogaster. Of a group of structurally comparable acyclotides, ribe 31 showed the most potent toxicity when fed to D. melanogaster. We screened a range of acyclotides and cyclotides and found their toxicity toward human red blood cells was substantially lower than toward insect cells, highlighting their selectivity and potential for use as bioinsecticides. Our confocal microscopy experiments indicated their cytotoxicity is likely mediated via membrane disruption. Furthermore, our surface plasmon resonance studies suggested ribe 31 preferentially binds to membranes containing phospholipids with phosphatidyl-ethanolamine headgroups. Despite having an acyclic backbone, we determined the three-dimensional NMR solution structure of ribe 31 is similar to that of cyclotides. In summary, our results suggest that, with further optimization, ribe 31 could have applications as an insecticide due to its potent in vivo activity against D. melanogaster. More broadly, this work advances the field by demonstrating that acyclotides are more common than previously thought, have potent insecticidal activity, and have the advantage of potentially being more easily manufactured than cyclotides.


Assuntos
Ciclotídeos , Drosophila melanogaster , Inseticidas , Proteínas de Plantas , Violaceae , Animais , Humanos , Sequência de Aminoácidos , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ciclotídeos/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Inseticidas/química , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Violaceae/química , Eritrócitos/efeitos dos fármacos
12.
J Biol Chem ; 298(4): 101822, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35283188

RESUMO

Cyclotides have a wide range of bioactivities relevant for agricultural and pharmaceutical applications. This large family of naturally occurring macrocyclic peptides is divided into three subfamilies, with the bracelet subfamily being the largest and comprising the most potent cyclotides reported to date. However, attempts to harness the natural bioactivities of bracelet cyclotides and engineer-optimized analogs have been hindered by a lack of understanding of the structural and functional role of their constituent residues, which has been challenging because bracelet cyclotides are difficult to produce synthetically. We recently established a facile strategy to make the I11L mutant of cyclotide hyen D that is as active as the parent peptide, enabling the subsequent production of a series of variants. In the current study, we report an alanine mutagenesis structure-activity study of [I11L] hyen D to probe the role of individual residues on peptide folding using analytical chromatography, on molecular function using surface plasmon resonance, and on therapeutic potential using cytotoxicity assays. We found that Glu-6 and Thr-15 are critical for maintaining the structure of bracelet cyclotides and that hydrophobic residues in loops 2 and 3 are essential for membrane binding and cytotoxic activity, findings that are distinct from the structural and functional characteristics determined for other cyclotide subfamilies. In conclusion, this is the first report of a mutagenesis scan conducted on a bracelet cyclotide, offering insights into their function and supporting future efforts to engineer bracelet cyclotides for biotechnological applications.


Assuntos
Ciclotídeos , Ciclotídeos/química , Ciclotídeos/genética , Ciclotídeos/toxicidade , Interações Hidrofóbicas e Hidrofílicas , Mutagênese , Ligação Proteica/genética
13.
Mar Drugs ; 19(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34564144

RESUMO

The α4ß2 nAChR is implicated in a range of diseases and disorders including nicotine addiction, epilepsy and Parkinson's and Alzheimer's diseases. Designing α4ß2 nAChR selective inhibitors could help define the role of the α4ß2 nAChR in such disease states. In this study, we aimed to modify globular and ribbon α-conotoxin GID to selectively target the α4ß2 nAChR through competitive inhibition of the α4(+)ß2(-) or α4(+)α4(-) interfaces. The binding modes of the globular α-conotoxin [γ4E]GID with rat α3ß2, α4ß2 and α7 nAChRs were deduced using computational methods and were validated using published experimental data. The binding mode of globular [γ4E]GID at α4ß2 nAChR can explain the experimental mutagenesis data, suggesting that it could be used to design GID variants. The predicted mutational energy results showed that globular [γ4E]GID is optimal for binding to α4ß2 nAChR and its activity could not likely be further improved through amino-acid substitutions. The binding mode of ribbon GID with the (α4)3(ß2)2 nAChR was deduced using the information from the cryo-electron structure of (α4)3(ß2)2 nAChR and the binding mode of ribbon AuIB. The program FoldX predicted the mutational energies of ribbon [γ4E]GID at the α4(+)α4(-) interface, and several ribbon[γ4E]GID mutants were suggested to have desirable properties to inhibit (α4)3(ß2)2 nAChR.


Assuntos
Conotoxinas/química , Antagonistas Nicotínicos/química , Receptores Nicotínicos/química , Animais , Sítios de Ligação , Humanos , Modelos Moleculares , Mutagênese , Mutação , Neurônios , Ratos , Relação Estrutura-Atividade
14.
J Med Chem ; 64(14): 9906-9915, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34197114

RESUMO

We have designed a new class of highly potent bivalent melanocortin receptor ligands based on the nature-derived bicyclic peptide sunflower trypsin inhibitor 1 (SFTI-1). Incorporation of melanotropin pharmacophores in each of the two turn regions of SFTI-1 resulted in substantial gains in agonist activity particularly at human melanocortin receptors 1 and 3 (hMC1R/hMC3R) compared to monovalent analogues. In in vitro binding and functional assays, the most potent molecule, compound 6, displayed low picomolar agonist activity at hMC1R (pEC50 > 10.3; EC50 < 50 pM; pKi: 10.16 ± 0.04; Ki: 69 ± 5 pM) and is at least 30-fold more selective for this receptor than for hMC3R, hMC4R, or hMC5R. The results are discussed in the context of structural homology models of hMCRs in complex with the developed bivalent ligands.


Assuntos
Peptídeos Cíclicos/farmacologia , Receptor Tipo 1 de Melanocortina/agonistas , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
15.
J Med Chem ; 64(9): 5620-5631, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33902275

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR) is present in the central nervous system and plays an important role in cognitive function and memory. α-Conotoxin LvIB, identified from genomic DNA of Conus lividus, its three isomers and four globular isomer analogues were synthesized and screened at a wide range of nAChR subtypes. One of the analogues, amidated [Q1G,ΔR14]LvIB, was found to be a potent blocker of rat α7 nAChRs. Importantly, it differentiates between α7 nAChRs of human (IC50: 1570 nM) and rat (IC50: 97 nM). Substitutions between rat and human α7 nAChRs at three key mutation sites revealed that no single mutant could completely change the activity profile of amidated [Q1G,ΔR14]LvIB. Rather, we found that the combined influence of Gln141, Asn184, and Lys186 determines the α7 nAChR species specificity of this peptide. This engineered α4/4 conotoxin has potential applications as a template for designing ligands to selectively block human α7 nAChRs.


Assuntos
Conotoxinas/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Conotoxinas/síntese química , Conotoxinas/metabolismo , Humanos , Concentração Inibidora 50 , Isomerismo , Ligantes , Simulação de Dinâmica Molecular , Mutagênese , Oócitos/metabolismo , Ratos , Alinhamento de Sequência , Especificidade da Espécie , Xenopus/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/genética
16.
J Med Chem ; 64(7): 3767-3779, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33765386

RESUMO

Lactate dehydrogenase 5 (LDH5) is overexpressed in metastatic tumors and is an attractive target for anticancer therapy. Small-molecule drugs have been developed to target the substrate/cofactor sites of LDH5, but none has reached the clinic to date, and alternative strategies remain almost unexplored. Combining rational and computer-based approaches, we identified peptidic sequences with high affinity toward a ß-sheet region that is involved in protein-protein interactions (PPIs) required for the activity of LDH5. To improve stability and potency, these sequences were grafted into a cyclic cell-penetrating ß-hairpin peptide scaffold. The lead grafted peptide, cGmC9, inhibited LDH5 activity in vitro in low micromolar range and more efficiently than the small-molecule inhibitor GNE-140. cGmC9 inhibits LDH5 by targeting an interface unlikely to be inhibited by small-molecule drugs. This lead will guide the development of new LDH5 inhibitors and challenges the landscape of drug discovery programs exclusively dedicated to small molecules.


Assuntos
Inibidores Enzimáticos/farmacologia , Lactato Desidrogenase 5/antagonistas & inibidores , Peptídeos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Sítios de Ligação , Sangue/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/metabolismo , Humanos , Lactato Desidrogenase 5/química , Lactato Desidrogenase 5/metabolismo , Masculino , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em Folha beta , Estabilidade Proteica
17.
J Med Chem ; 64(3): 1685-1700, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33523678

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are pharmacological targets for the treatment of neuropathic pain, and the α6ß4 subtype has been identified as particularly promising. Rat α6ß4 nAChRs are less sensitive to some ligands than the human homologue potentially complicating the use of rodent α6ß4 receptors for screening therapeutic compounds. We used molecular dynamics simulations coupled with functional assays to study the interaction between α-conotoxin PeIA and α6ß4 nAChRs and to identify key ligand-receptor interactions that contribute to species differences in α-conotoxin potency. Our results show that human and rat α6ß4 nAChRs have distinct ligand-binding motifs and show markedly different sensitivities to α-conotoxins. These studies facilitated the creation of PeIA-5667, a peptide that shows 270-fold higher potency for rat α6ß4 nAChRs over native PeIA and similar potency for the human homologue. Our results may inform the design of therapeutic ligands that target α6ß4 nAChRs for the treatment of neuropathic pain.


Assuntos
Antagonistas Nicotínicos/síntese química , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Animais , Conotoxinas/farmacologia , Desenho de Fármacos , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Neuralgia/tratamento farmacológico , Oócitos/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/farmacologia , Ratos , Receptores Nicotínicos/química , Xenopus laevis
18.
Biochem Pharmacol ; 181: 114129, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32619425

RESUMO

Neuropeptides are signalling molecules mainly secreted from neurons that act as neurotransmitters or peptide hormones to affect physiological processes and modulate behaviours. In humans, neuropeptides are implicated in numerous diseases and understanding their role in physiological processes and pathologies is important for therapeutic development. Teasing apart the (patho)physiology of neuropeptides remains difficult due to ligand and receptor promiscuity and the complexity of the signalling pathways. The current approach relies on a pharmacological toolbox of agonists and antagonists displaying high selectivity for independent receptor subtypes, with the caveat that only few selective ligands have been discovered or developed. Animal venoms represent an underexplored source for novel receptor subtype-selective ligands that could aid in dissecting human neuropeptide signalling systems. Multiple endogenous-like neuropeptides as well as peptides acting on neuropeptide receptors are present in venoms. In this review, we summarise current knowledge on neuropeptides and discuss venoms as a source for ligands targeting neuropeptide signalling systems.


Assuntos
Descoberta de Drogas/métodos , Neuropeptídeos/metabolismo , Peptídeos/metabolismo , Transdução de Sinais , Animais , Insuficiência Cardíaca/metabolismo , Humanos , Ligantes , Neuropeptídeos/química , Obesidade/metabolismo , Peptídeos/química , Peçonhas/química , Peçonhas/metabolismo
19.
ACS Pharmacol Transl Sci ; 3(3): 535-546, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32566918

RESUMO

Compelling human genetic studies have identified the voltage-gated sodium channel NaV1.7 as a promising therapeutic target for the treatment of pain. The analgesic spider-venom-derived peptide µ-theraphotoxin-Pn3a is an exceptionally potent and selective inhibitor of NaV1.7; however, little is known about the structure-activity relationships or channel interactions that define this activity. We rationally designed 17 Pn3a analogues and determined their activity at hNaV1.7 using patch-clamp electrophysiology. The positively charged amino acids K22 and K24 were identified as crucial for Pn3a activity, with molecular modeling identifying interactions of these residues with the S3-S4 loop of domain II of hNaV1.7. Removal of hydrophobic residues Y4, Y27, and W30 led to a loss of potency (>250-fold), while replacement of negatively charged D1 and D8 residues with a positively charged lysine led to increased potencies (>13-fold), likely through alterations in membrane lipid interactions. Mutating D8 to an asparagine led to the greatest improvement in Pn3a potency at NaV1.7 (20-fold), while maintaining >100-fold selectivity over the major off-targets NaV1.4, NaV1.5, and NaV1.6. The Pn3a[D8N] mutant retained analgesic activity in vivo, significantly attenuating mechanical allodynia in a clinically relevant mouse model of postsurgical pain at doses 3-fold lower than those with wild-type Pn3a, without causing motor-adverse effects. Results from this study will facilitate future rational design of potent and selective peptidic NaV1.7 inhibitors for the development of more efficacious and safer analgesics as well as to further investigate the involvement of NaV1.7 in pain.

20.
J Nat Prod ; 83(6): 1817-1828, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32437150

RESUMO

Viola is the largest genus in the Violaceae plant family and is known for its ubiquitous natural production of cyclotides. Many Viola species are used as medicinal herbs across Asia and are often consumed by humans in teas for the treatment of diseases, including ulcers and asthma. Previous studies reported the isolation of cyclotides from Viola species in many countries in the hope of discovering novel compounds with anti-cancer activities; however, Viola species from Vietnam have not been investigated to date. Here, the discovery of cyclotides from three Viola species (V. arcuata, V. tonkinensis, and V. austrosinensis) collected in the northern mountainous region of Vietnam is reported. Ten cyclotides were isolated from these three Viola species: four are novel and six were previously reported to be expressed in other plants. The structures of three of the new bracelet cyclotides are similar to that of cycloviolacin O2. Because cycloviolacin O2 has previously been shown to have potent activity against a wide range of cancer cell lines including HeLa (human cervical cancer cells) and PC-3 (human prostate cancer cells), the cancer cytotoxicity of the cyclotides isolated from V. arcuata was assessed. All tested cyclotides were cytotoxic against cancer cells, albeit to varying degrees. The sequences discovered in this study significantly expand the understanding of cyclotide diversity, especially in comparison with other cyclotides found in plants from the Asian region.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Ciclotídeos/química , Ciclotídeos/farmacologia , Viola/química , Sequência de Aminoácidos , Biodiversidade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Masculino , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...