Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(22): 40531-40539, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298984

RESUMO

An interesting property of high harmonic generation in solids is its laser polarization dependent nature which in turn provides information about the crystal and band structure of the generation medium. Here we report on the linear polarization dependence of high-order harmonic generation from a gallium arsenide crystal. Interestingly, we observe a significant evolution of the anisotropic response of above bandgap harmonics as a function of the laser intensity. We attribute this change to fundamental microscopic effects of the emission process comprising a competition between intraband and interband dynamics. This intensity dependence of the anisotropic nature of the generation process offers the possibility to drive and control the electron current along preferred directions of the crystal, and could serve as a switching technique in an integrated all-solid-state petahertz optoelectronic device.

2.
Opt Lett ; 47(19): 4865-4868, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181136

RESUMO

We demonstrate a method to image an object using a self-probing approach based on semiconductor high-harmonic generation. On the one hand, ptychography enables high-resolution imaging from the coherent light diffracted by an object. On the other hand, high-harmonic generation from crystals is emerging as a new source of extreme-ultraviolet ultrafast coherent light. We combine these two techniques by performing ptychography measurements with nanopatterned crystals serving as the object as well as the generation medium of the harmonics. We demonstrate that this strong field in situ approach can provide structural information about an object. With the future developments of crystal high harmonics as a compact short-wavelength light source, our demonstration can be an innovative approach for nanoscale imaging of photonic and electronic devices in research and industry.

4.
Sci Rep ; 9(1): 5663, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952870

RESUMO

The enhancement and control of non-linear phenomena at a nanometer scale has a wide range of applications in science and in industry. Among these phenomena, high-harmonic generation in solids is a recent focus of research to realize next generation petahertz optoelectronic devices or compact all solid state EUV sources. Here, we report on the realization of the first nanoscale high harmonic source. The strong field regime is reached by confining the electric field from a few nanojoules femtosecond laser in a single 3D semiconductor waveguide. We reveal a strong competition between enhancement of coherent harmonics and incoherent fluorescence favored by excitonic processes. However, far from the band edge, clear enhancement of the harmonic emission is reported with a robust sustainability offering a compact nanosource for applications. We illustrate the potential of our harmonic nano-device by performing a coherent diffractive imaging experiment. Ultra-compact UV/X-ray nanoprobes are foreseen to have other applications such as petahertz electronics, nano-tomography or nano-medicine.

5.
Opt Lett ; 44(3): 546-549, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702675

RESUMO

Light beams carrying orbital angular momentum (OAM) have led to stunning applications in various fields from quantum information to microscopy. We examine OAM from the recently observed high-harmonic generation (HHG) in semiconductor crystals. HHG from solids could be a valuable approach for integrated high-flux short-wavelength coherent light sources. First, we verify the transfer and conservation of the OAM in the strong-field regime of interaction from the generation laser to the harmonics. Secondly, we create OAM beams by etching a spiral zone structure directly at the surface of a zinc oxide crystal. Such diffractive optics act on the generated harmonics and produces focused optical vortices with sub-micrometric size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA