Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 558(7710): 406-409, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925969

RESUMO

It has been known for decades that the observed number of baryons in the local Universe falls about 30-40 per cent short1,2 of the total number of baryons predicted 3 by Big Bang nucleosynthesis, as inferred4,5 from density fluctuations of the cosmic microwave background and seen during the first 2-3 billion years of the Universe in the so-called 'Lyman α forest'6,7 (a dense series of intervening H I Lyman α absorption lines in the optical spectra of background quasars). A theoretical solution to this paradox locates the missing baryons in the hot and tenuous filamentary gas between galaxies, known as the warm-hot intergalactic medium. However, it is difficult to detect them there because the largest by far constituent of this gas-hydrogen-is mostly ionized and therefore almost invisible in far-ultraviolet spectra with typical signal-to-noise ratios8,9. Indeed, despite large observational efforts, only a few marginal claims of detection have been made so far2,10. Here we report observations of two absorbers of highly ionized oxygen (O VII) in the high-signal-to-noise-ratio X-ray spectrum of a quasar at a redshift higher than 0.4. These absorbers show no variability over a two-year timescale and have no associated cold absorption, making the assumption that they originate from the quasar's intrinsic outflow or the host galaxy's interstellar medium implausible. The O VII systems lie in regions characterized by large (four times larger than average 11 ) galaxy overdensities and their number (down to the sensitivity threshold of our data) agrees well with numerical simulation predictions for the long-sought warm-hot intergalactic medium. We conclude that the missing baryons have been found.

2.
Science ; 345(6192): 64-8, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24994647

RESUMO

Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before. It blocks 90% of the soft x-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and, at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...