Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dev Ctries ; 17(2): 251-259, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36897908

RESUMO

Isolation of human respiratory syncytial virus (HRSV) from clinical samples and storage of isolates for long period remains a considerable problem. We describe in detail the optimized conditions of HRSV isolation and cultivation in three cell cultures HeLa, HEp-2, and Vero. HRSV was detected in 35.2% (166/471) specimens by real-time PCR from symptomatic infants and children up to 15 years from October 2017 to March 2018 in Russia. HRSV-positive samples were used for virus isolation in HeLa, HEp-2, and Vero cells in different manners (in monolayer or suspension). To optimize the conditions of HRSV cultivation, these cell cultures were treated or not with receptor-destroying enzyme (RDE). Ten isolates were successfully obtained by the way of infection of the suspension of cells with subsequent RDE treatment. Among them, several isolates induced the cytopathogenic effect (CPE) by the syncytium formation in both Hela and HEp-2 cell cultures. The genetic analysis revealed that the manners of isolation by using monolayer or suspension and subsequent RDE treatment did not influence the nucleotide and amino acid structures of obtained HRSVs. The CPE characteristics of obtained viruses were the same in HeLa, HEp-2, and Vero cell cultures, and were described as large syncytium up to 150 microns or more in size with the nuclei peripheral location and an optically bright zone in the center of the formation. We showed that infection of cell suspension with the subsequent RDE treatment increased the chance of HRSVs isolation from clinical samples.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Lactente , Criança , Animais , Chlorocebus aethiops , Humanos , Vírus Sincicial Respiratório Humano/genética , Células Vero , Federação Russa
2.
Microorganisms ; 9(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920057

RESUMO

The diversity of aerobic anoxygenic phototrophs (AAPs) and rhodopsin-containing bacteria in the surface microlayer, water column, and epilithic biofilms of Lake Baikal was studied for the first time, employing pufM and rhodopsin genes, and compared to 16S rRNA diversity. We detected pufM-containing Alphaproteobacteria (orders Rhodobacterales, Rhizobiales, Rhodospirillales, and Sphingomonadales), Betaproteobacteria (order Burkholderiales), Gemmatimonadetes, and Planctomycetes. Rhodobacterales dominated all the studied biotopes. The diversity of rhodopsin-containing bacteria in neuston and plankton of Lake Baikal was comparable to other studied water bodies. Bacteroidetes along with Proteobacteria were the prevailing phyla, and Verrucomicrobia and Planctomycetes were also detected. The number of rhodopsin sequences unclassified to the phylum level was rather high: 29% in the water microbiomes and 22% in the epilithon. Diversity of rhodopsin-containing bacteria in epilithic biofilms was comparable with that in neuston and plankton at the phyla level. Unweighted pair group method with arithmetic mean (UPGMA) and non-metric multidimensional scaling (NMDS) analysis indicated a distinct discrepancy between epilithon and microbial communities of water (including neuston and plankton) in the 16S rRNA, pufM and rhodopsin genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...