Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21247, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37964847

RESUMO

There is a growing concern on a global scale that the world should transition towards the utilisation of energy-efficient technologies. Hydropower plays a very significant part in the fight against climate change, and as a result, it lessens the impact that climate changewill have on our ability to achieve the Sustainable Development Goals (SDGs). Both the effectiveness of hydropower generation and the amount of streamflow are impacted by climate change as well as land use and land cover (LULC). Accordingly, the purpose of this study is to conduct a literature review on the topic of the past and future effects of climate, land use, and land cover changes on hydropower generation. This review will be based on the entries found in a number of reliable databases. A systematic literature review was carried out to analyse how LULC and climate change will affect hydropower generation and development. The research was based on 158 pieces of relevant literature that had been reviewed by experts and indexed in Scopus, Google Scholar, and ScienceDirect. The review was carried out to determine three goals in mind: the impact of climate change on hydropower generation and development; the impact of climate change on streamflow; and the combined impact of changes in climate and changes in LULC on hydropower. The findings bring to light the primary factors contributing to climate change as well as shifts in LULC which are essential to the generation of hydropower on all scales. The study identifies factors such as precipitation, temperature, floods, and droughts as examples of climate change. Deforestation, afforestation, and urbanisation are identified as the primary causes of changes in LULC over the past several decades. These changes have a negative impact on the generation and development of hydropower.

2.
Heliyon ; 6(8): e04722, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32904314

RESUMO

Climate change continues to pose a threat to the sustainability of water resources. Global warming can have several effects on the water resources and water demands in the Densu River Basin especially household water use and agriculture use among several others. However, the extents to which the hydrology of the Densu River Basin is will be altered in the future remains unknown. In this research, the Water Evaluation and Planning (WEAP21) system was used to study the impacts of future climate change on water resources in the Densu River Basin. Future climate data (rainfall and temperature) for the period 2051-2080 was generated from the Swedish Meteorological and Hydrological Institute's climate models (ICHEC-EC-EARTH and RCA4) for RCP4.5 scenario under CORDEX experiment. The results of the study indicate that the Densu River Basin will experience a temperature increase by 8.23% and a 17% reduction in rainfall resulting in 58.3% reduction in water resources in the area. The climate change impact analysis indicates a reduction in the river streamflow due to decrease in rainfall. It is recommended that future research on climate change adaptation for water management in the Densu River Basin should be conducted.

3.
Sci Total Environ ; 709: 136165, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31905543

RESUMO

Inland valleys (IVs) in Africa are important landscapes for rice cultivation and are targeted by national governments to attain self-sufficiency. Yet, there is limited information on the spatial distribution of IVs suitability at the national scale. In the present study, we developed an ensemble model approach to characterize the IVs suitability for rainfed lowland rice using 4 machine learning algorithms based on environmental niche modeling (ENM) with presence-only data and background sample, namely Boosted Regression Tree (BRT), Generalized Linear Model (GLM), Maximum Entropy (MAXNT) and Random Forest (RF). We used a set of predictors that were grouped under climatic variables, agricultural water productivity and soil water content, soil chemical properties, soil physical properties, vegetation cover, and socio-economic variables. The Area Under the Curves (AUC) evaluation metrics for both training and testing were respectively 0.999 and 0.873 for BRT, 0.866 and 0.816 for GLM, 0.948 and 0.861 for MAXENT and 0.911 and 0.878 for RF. Results showed that proximity of inland valleys to roads and urban centers, elevation, soil water holding capacity, bulk density, vegetation index, gross biomass water productivity, precipitation of the wettest quarter, isothermality, annual precipitation, and total phosphorus among others were major predictors of IVs suitability for rainfed lowland rice. Suitable IVs areas were estimated at 155,000-225,000 Ha in Togo and 351,000-406,000 Ha in Benin. We estimated that 53.8% of the suitable IVs area is needed in Togo to attain self-sufficiency in rice while 60.1% of the suitable IVs area is needed in Benin to attain self-sufficiency in rice. These results demonstrated the effectiveness of an ensemble environmental niche modeling approach that combines the strengths of several models.


Assuntos
Oryza , Agricultura , Benin , Solo , Togo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...