Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30062, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707338

RESUMO

Optical sensor technology has undergone a transformative evolution with the advent of fluorescence ratio techniques (FIR) and fluorescence lifetime (FL) strategies, revolutionizing precision, performance, and reliability. This study delves into the synthesis of Ba2GdV3O11 phosphors doped with Ho3+/Nd3+, Er3+, and Yb3+, employing the sol-gel method for upconverting material fabrication. A thorough investigation into the structural, morphological, and optical properties of the synthesized phosphors is conducted. Excitation at 980 nm unveils upconversion (UC) emissions across green and red spectra. The intensities of the observed emission bands for Ho3+, Nd3+, and Er3+ demonstrate significant sensitivity to fluctuations in temperature. Temperature sensing relies on the 4S3/2 and 2H11/2 upconversion emissions bands, in addition to the emission lifetimes at 4S3/2. Enhanced thermal sensitivity values are attained, reaching up to 1.03 % K-1 and 1.07 % K-1 using the FIR strategy, and up to 0.146 % K-1 and 0.47 % K-1 with the FL strategy for Ho3+/Er3+/Yb3+ and Nd3+/Er3+/Yb3+ tri-doped Ba2GdV3O11 phosphors, respectively. Furthermore, the studied phosphors exhibit remarkable precision in detecting minute temperature changes (0.3 K), positioning them as promising candidates for precise temperature sensing. This study pioneers innovative methodologies to advance optical thermometry techniques, offering promising prospects for scientific and industrial applications reliant on precise optical temperature sensing.

2.
Dalton Trans ; 53(5): 2357-2372, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38214574

RESUMO

Optical thermometry is a non-contact temperature sensing technique with widespread applications. It offers precise measurements without physical contact, making it ideal for situations where contact-based methods are impractical. However, improving the accuracy of optical thermometry remains an ongoing challenge. Herein, enhancing the thermometric properties of luminescent thermometers through novel materials or strategies is crucial for developing more precise sensors. Hence, the present study focuses on the application of four-mode luminescence thermometric techniques in sol-gel synthesized Er3+/Yb3+ co-doped Ba2GdV3O11 phosphors for optical temperature sensing in the temperature range of 298-573 K. The upconversion (UC) luminescence is achieved under excitations of 980 nm or 1550 nm, resulting in bright yellow-green emission in the visible spectral range. Temperature sensing is realized by exploiting the UC emissions of 4S3/2, 2H11/2 and 4F7/2 bands, which represent intensity ratios of thermally coupled levels (TCELs) and non-thermally coupled levels (NTCELs) of Er3+/Yb3+, along with the emission lifetimes at 4S3/2. The relative sensitivity (Sr) values for TCELs exhibit a gradual decrease with rising temperature, reaching a maximum of 1.1% K-1 for 980 nm excitation and 0.86% K-1 for 1550 nm excitation at 298 K. Conversely, for NTCELs, the highest Sr value observed is 0.9% K-1 at 298 K for 1550 nm excitation. Moreover, the emission lifetimes at 4S3/2 yield notably high Sr values of up to 5.0% µs K-1 (at 425 K). Furthermore, the studied phosphors have a sub-degree thermal resolution, making them excellent materials for accurate temperature sensing. Overall, this study provides a promising new direction for the development of more precise and reliable optical thermometry techniques, which could have important implications for a range of scientific and industrial optical temperature sensing applications.

3.
Dalton Trans ; 52(48): 18233-18246, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37997629

RESUMO

A series of SrY2(MoO4)4 phosphors doped and co-doped with Tb3+/Sm3+ ions was synthesized to develop new optical temperature sensor materials. The structures, morphologies, and luminescent characteristics of these phosphors were thoroughly investigated. Luminescence spectra of mono-doped SrY2(MoO4)4 phosphors were measured under the excitation at 375 and 403 nm corresponding to direct excitation of Tb3+ and Sm3+, respectively. The characteristic luminescence bands corresponding to electronic transitions of terbium and samarium ions were detected and investigated for different dopant concentrations. The emission spectrum of the Tb3+/Sm3+ co-doped sample exhibited a total of five distinct emission peaks, indicating an energy transfer from Tb3+ to Sm3+ ions. The energy transfer efficiency from Tb3+ ions to Sm3+ ions was investigated in detail. At elevated temperatures, Tb3+ and Sm3+ exhibited distinct thermal sensitivities in their emission and excitation spectra, leading to evident thermochromic behavior. The fluorescence intensity ratio (FIR) was utilized with dual center to evaluate the temperature sensitivity of SrY2(MoO4)4:Tb3+/Sm3+ phosphors. The temperature sensing mechanism relied on the emission band intensity ratios of the 4G5/2 → 6H5/2, 4G5/2 → 6H9/2, and 4G5/2 → 6H7/2 transitions of Sm3+ in conjunction with the 5D5/2 → 7F5/2 transitions of Tb3+. This approach demonstrated high thermal sensitivity values, reaching up to 0.9% K-1. The studied nanoparticles exhibited sub-degree thermal resolution, making them suitable candidates for precise temperature-sensing applications.

4.
RSC Adv ; 12(12): 7529-7539, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35424657

RESUMO

A new Na3Y(VO4)2:Eu3+ (NYVO:Eu3+) phosphor was prepared using the sol-gel method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to evaluate phase purity and particle size, respectively. The optical properties were investigated by UV-visible absorption, PL, and PLE spectroscopies. The absorption measurements show the formation of the vanadate host by the presence of its characteristic band in the visible region related to VO4 3- groups. The experimental results show that the NYVO:Eu3+ phosphors exhibit high-brightness and thermally stable emission. Under near-ultraviolet (UV) excitation, both the broadband emission from VO4 3- groups and the sharp peak emissions from Eu3+ ions are observed. The highest luminescence intensity was achieved for an optimal europium concentration of 15 mol%. The study of the chromaticity parameters of these compounds gives a thermally stable hot emission in the red domain, with a color purity of about 85%, which qualifies the NYVO:Eu3+ compound as a potential phosphor for light-emitting diode (LED) applications. Thermal sensing using NYVO:Eu3+ phosphors are based on monitoring the luminescence intensity ratio between the NYVO host emission and Eu3+ luminescence lines. Notably, the optical thermometry of NYVO:Eu3+ was characterized based on the fluorescence intensity ratio of VO4 3- and Eu3+ emissions in the 298-440 K range, with maximum absolute and relative sensitivities of 3.4% K-1 and 0.0032 K-1 respectively and a temperature uncertainty of 0.01. NYVO:Eu3+ can then be considered as a potential red phosphor for application in ultraviolet-pumped white light-emitting diodes and as a potential optical thermometer. It provides new possibilities for the design of multifunctional materials for red light-emitting diodes and for non-contact thermometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...