Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083009

RESUMO

A quantitative method of analyzing EEG signals after stroke onset can help monitor disease progression and tailor treatments. In this work, we present an EEG-based imaging algorithm to estimate the location and size of the stroke infarct core and penumbra tissues. Building on recent advancements in localizing neural silences, we develop an algorithm that utilizes known spectral properties of the infarct core and penumbra to separately localize them. Our algorithm uses these properties to estimate source contributions to the scalp EEG recordings in different frequency bands. Subsequently, it utilizes optimization techniques to search for the affected brain sources iteratively. We test our algorithm on simulated datasets using a realistic MRI head model, achieving center-of-mass error of 12.80mm and 17.24mm, and size estimation error of 21.78% and 36.62% for infarct core and penumbra respectively.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Isquemia Encefálica/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Infarto , Eletroencefalografia
2.
J Med Internet Res ; 24(1): e28368, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989691

RESUMO

BACKGROUND: The global COVID-19 pandemic has triggered a fundamental reexamination of how human psychological research can be conducted safely and robustly in a new era of digital working and physical distancing. Online web-based testing has risen to the forefront as a promising solution for the rapid mass collection of cognitive data without requiring human contact. However, a long-standing debate exists over the data quality and validity of web-based studies. This study examines the opportunities and challenges afforded by the societal shift toward web-based testing and highlights an urgent need to establish a standard data quality assurance framework for online studies. OBJECTIVE: This study aims to develop and validate a new supervised online testing methodology, remote guided testing (RGT). METHODS: A total of 85 healthy young adults were tested on 10 cognitive tasks assessing executive functioning (flexibility, memory, and inhibition) and learning. Tasks were administered either face-to-face in the laboratory (n=41) or online using remote guided testing (n=44) and delivered using identical web-based platforms (Cambridge Neuropsychological Test Automated Battery, Inquisit, and i-ABC). Data quality was assessed using detailed trial-level measures (missed trials, outlying and excluded responses, and response times) and overall task performance measures. RESULTS: The results indicated that, across all data quality and performance measures, RGT data was statistically-equivalent to in-person data collected in the lab (P>.40 for all comparisons). Moreover, RGT participants out-performed the lab group on measured verbal intelligence (P<.001), which could reflect test environment differences, including possible effects of mask-wearing on communication. CONCLUSIONS: These data suggest that the RGT methodology could help ameliorate concerns regarding online data quality-particularly for studies involving high-risk or rare cohorts-and offer an alternative for collecting high-quality human cognitive data without requiring in-person physical attendance.


Assuntos
COVID-19 , Pandemias , Humanos , Internet , Testes Neuropsicológicos , SARS-CoV-2 , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...