Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 12(12): e12387, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054534

RESUMO

Natural killer cell-derived extracellular vesicles (NK-EVs) have shown promising potential as biotherapeutics for cancer due to their unique attributes as cytotoxic nanovesicles against cancer cells and immune-modulatory activity towards immune cells. However, a biomanufacturing workflow is needed to produce clinical-grade NK-EVs for pre-clinical and clinical applications. This study established a novel biomanufacturing workflow using a closed-loop hollow-fibre bioreactor to continuously produce NK-EVs from the clinically relevant NK92-MI cell line under serum-free, Xeno-free and feeder-free conditions following GMP-compliant conditions. The NK92 cells grown in the bioreactor for three continuous production lots resulted in large quantities of both NK cell and NK-EV biotherapeutics at the end of each production lot (over 109 viable cells and 1013 EVs), while retaining their cytotoxic payload (granzyme B and perforin), pro-inflammatory cytokine (interferon-gamma) content and cytotoxicity against the human leukemic cell line K562 with limited off-target toxicity against healthy human fibroblast cells. This scalable biomanufacturing workflow has the potential to facilitate the clinical translation of adoptive NK cell-based and NK-EV-based immunotherapies for cancer with GMP considerations.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Fluxo de Trabalho , Células Matadoras Naturais , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/metabolismo
2.
Mol Ther Methods Clin Dev ; 29: 173-184, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37063482

RESUMO

Natural killer (NK) cells are potent cytotoxic innate lymphocytes that can be used for cancer immunotherapy. Since the balance of signals from activating and inhibitory receptors determines the activity of NK cells, their anti-tumor activity can be potentiated by overexpressing activating receptors or knocking out inhibitory receptors via genome engineering, such as chimeric antigen receptor (CAR) transgenesis and CRISPR-Cas9-mediated gene editing, respectively. Here, we report the development of a one-step strategy for CRISPR-Cas9-mediated gene knockout and CAR transgenesis in NK cells using retroviral particles. We generated NK cells expressing anti-epidermal growth factor receptor (EGFR)-CAR with simultaneous TIGIT gene knockout using single transduction and evaluated the consequence of the genetic modifications in vitro and in vivo. Taken together, our results demonstrate that retroviral particle-mediated engineering provides a strategy readily applicable to simultaneous genetic modifications of NK cells for efficient immunotherapy.

3.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740500

RESUMO

Due to their crucial role in tumor immunity, NK cells have quickly became a prime target for immunotherapies, with the adoptive transfer of NK cells and the use of NK cell engagers quickly moving to the clinical stage. On the other hand, only a few studies have focused on small molecule drugs capable of unleashing NK cells against cancer. In this context, repurposing small molecules is an attractive strategy to identify new immunotherapies from already approved drugs. Here, we developed a new platform to screen small molecule compounds based on a high-throughput luciferase-release cytotoxicity assay. We tested 1200 FDA approved drugs from the Prestwick Chemical Library, to identify compounds that increase NK cells' cytotoxic potential. We found that the antibiotic colistin sulfate increased the cytotoxicity of human NK cells towards cancer cells. The effect of colistin was short lived and was not observed when NK cells were pretreated with the drug, showing how NK cell activity was potentiated only when the compound was present at the time of recognition of cancer cells. Further studies are needed to uncover the mechanism of action and the pre-clinical efficacy of colistin sulfate in mouse cancer models.

4.
Cell Death Dis ; 9(8): 815, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050079

RESUMO

Triple-negative breast cancer (TNBC) is the most refractory subtype of breast cancer. It causes the majority of breast cancer-related deaths, which has been largely associated with the plasticity of tumor cells and persistence of cancer stem cells (CSCs). Conventional chemotherapeutics enrich CSCs and lead to drug resistance and disease relapse. Development of a strategy capable of inhibiting both bulk and CSC populations is an unmet medical need. Inhibitors against estrogen receptor 1, HDACs, or mTOR have been studied in the treatment of TNBC; however, the results are inconsistent. In this work, we found that patient TNBC samples expressed high levels of mTORC1 and HDAC genes in comparison to luminal breast cancer samples. Furthermore, co-inhibition of mTORC1 and HDAC with rapamycin and valproic acid, but neither alone, reproducibly promoted ESR1 expression in TNBC cells. In combination with tamoxifen (inhibiting ESR1), both S6RP phosphorylation and rapamycin-induced 4E-BP1 upregulation in TNBC bulk cells was inhibited. We further showed that fractionated CSCs expressed higher levels of mTORC1 and HDAC than non-CSCs. As a result, co-inhibition of mTORC1, HDAC, and ESR1 was capable of reducing both bulk and CSC subpopulations as well as the conversion of fractionated non-CSC to CSCs in TNBC cells. These observations were partially recapitulated with the cultured tumor fragments from TNBC patients. Furthermore, co-administration of rapamycin, valproic acid, and tamoxifen retarded tumor growth and reduced CD44high/+/CD24low/- CSCs in a human TNBC xenograft model and hampered tumorigenesis after secondary transplantation. Since the drugs tested are commonly used in clinic, this study provides a new therapeutic strategy and a strong rationale for clinical evaluation of these combinations for the treatment of patients with TNBC.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Histona Desacetilases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Histona Desacetilases/química , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fosfoproteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Regulação para Cima/efeitos dos fármacos , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...