Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10795, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734823

RESUMO

Positive pressure ventilators (PPV) used by 97.7% of officers of the National Fire Service in Poland, are characterized by work that is not in line with the expectations of the firefighters. In order to improve the technical and operational features of these devices, a survey was conducted among 25,000 eligible firefighters, identifying the application of these devices, problems in use and expected development directions. A total of 682 officers voluntarily completed the survey. Based on their findings, it was determined that ventilators are most often used to smoke out buildings after or during a fire. Mentioned problems when using these devices were mainly noise (78.2%), exhaust emissions (68.5%), and impediments to mobility through the device's relatively heavy weight (40.2%). Other inconveniences were mentioned by less than 20% of firefighters. Polish firefighters expect the development of these devices mainly in terms of the above-mentioned features (noise reduction (81.7%) and reduction of the weight and size of the ventilators (about 50%)). Other expectations relate to the improvement of smoke removal in buildings: increasing the efficiency of smoke removal (46.4%) and efficiency regarding the rate of smoke removal in a building by increasing the size of the incoming airflow from the building's surroundings (33.2%). About 15% of firefighters expect changes in the operation of the ventilator itself, that is, an increase in the effective operating time (electric ventilators) and an increase in the device's uptime. The aim of the article is to identify the issues encountered during the operation and to indicate the expected direction of development for PPV by users. This information can be used by engineers to initiate new development work on these devices.

2.
Sci Rep ; 14(1): 6852, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514678

RESUMO

Positioning the positive pressure ventilator in front of the door opening affects the effectiveness of the rescue operation carried out during a fire. An important factor determining the effectiveness of the positive pressure ventilator is also the layout of the rooms within the gas exchange path and the obstacles present there. The purpose of this article is to assess the feasibility of using analyses such as large eddy simulation (LES) to verify the efficiency of mobile fans under simulation conditions, without the need for time-consuming experimentation (also for complex room volumes of buildings). The article presents a comparative analysis to assess the degree of convergence of flow parameters obtained during an experiment (in a multi-story building) and computational fluid dynamics (CFD) simulations. For volumetric flow rate, convergence was achieved at levels ranging from 0.4% (for 5 m) to 11.5% (1 m), and for pressure values, the differences achieved ranged from 0.6% (5 m) to 30.1% (4 m). This paper demonstrates that the LES model can be used to perform CFD simulations in the area of assessing the performance of a positive pressure ventilator. The article also describes a test methodology for determining the flow parameters of an air stream, which can be used to perform numerical simulations.

3.
Sci Rep ; 13(1): 14976, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697018

RESUMO

The article aims to determine the influence of fan positioning parameters, i.e., its distance from a door opening (1-7 m) and the angle of inclination of the impeller axis in relation to the ground (0°-18°) on the amount of air flow pumped through a door opening. The experiment was carried out using a mock-up simulating a door opening, on which a measurement plane was located, without the cubic capacity (building structure) behind the door opening. The volumetric air flow stream was determined based on measuring (at 50 measuring points) the velocity of the air stream blown onto the surface of the door opening mock-up. Four commercial positive pressure ventilators, commonly used in rescue operations, with a power of 0.6-6.3 kW were tested. The tests showed that the value of the air flow stream at the most favourable setting (distance in the range of 3-5 m and the angle of the impeller axis to the ground in the range of 5°-12.2°) is included in the range of 18,304 ± 2460 m3/h to about 45,189 ± 4619 m3/h. Such settings cause the air stream to be aimed at the central area of the door opening. Imprecise mobile fan arrangement may reduce the flow rate from 41 to 76% in relation to the most favourable results.

4.
Sci Rep ; 11(1): 8269, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859267

RESUMO

Machines and devices for the production, transport and segregation of products are placed in production and storage rooms. Flat conveyor and drive belts are very often used for their construction. Due to heavy loads and difficult operating conditions, these belts can catch fire and, as a result, become the main source of air contaminants harmful to human health and life. This article examines the emission level of toxic chemical compounds most often produced during the thermal decomposition and combustion of flat drive and conveyor belts. Six types of flat belts, which were made of various polymer materials, i.e., polyamide, rubber, and polyurethane, and were pyrolyzed in a tube furnace at 950 °C, were tested for emission. Using an Fourier transform infrared spectroscopy gas analyser, five gaseous products of combustion were identified, i.e., carbon mono oxide, carbon dioxide, hydrogen cyanide, hydrogen bromide and sulfur dioxide (SO2). Chemical analysis showed that SO2 compounds and hydrogen bromide were present in only two samples. The test results indicate that gas emission concentration limits for all the tested belts were significantly exceeded. A comparative analysis of the concentration limits of V-belts described in the authors' earlier works shows that flat belts demonstrate lower emission levels of harmful compounds than V-belts. In addition, research has shown that compared to traditional rubber-based belts, belts made of modern materials exhibit no emission of hydrogen chloride compounds during thermal decomposition and combustion.

5.
Polymers (Basel) ; 12(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998361

RESUMO

The article presents the potential impact of flat drive and transport belts on people's safety during a fire. The analysis distinguished belts made of classically used fabric-rubber composite materials reinforced with cord and currently used multilayer polymer composites. Moreover, the products' multilayers during the thermal decomposition and combustion can be a source of emissions for unpredictable and toxic substances with different concentrations and compositions. In the evaluation of the compared belts, a testing methodology was used to determine the toxicometric indicators (WLC50SM) on the basis of which it was possible to determine the toxicity of thermal decomposition and combustion products in agreement with the standards in force in several countries of the EU and Russia. The analysis was carried out on the basis of the registration of emissions of chemical compounds during the thermal decomposition and combustion of polymer materials at three different temperatures. Moreover, the degradation kinetics of the polymeric belts by using the thermogravimetric (TGA) technique was evaluated. Test results have shown that products of thermal decomposition resulting from the neoprene (NE22), leder leder (LL2), thermoplastic connection (TC), and extra high top cower (XH) belts can be characterized as moderately toxic or toxic. Their toxicity significantly increases with the increasing temperature of thermal decomposition or combustion, especially above 450 °C. The results showed that the belts made of several layers of polyamide can be considered the least toxic in fire conditions. The TGA results showed that NBR/PA/PA/NBR belt made with two layers of polyamide and the acrylonitrile-butadiene rubber has the highest thermal stability in comparison to other belts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA