Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Muscle Nerve ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225106

RESUMO

INTRODUCTION/AIMS: Swim training and regulation of copper metabolism result in clinical benefits in amyotrophic lateral sclerosis (ALS) mice. Therefore, the study aimed to determine whether swim training improves copper metabolism by modifying copper metabolism in the skeletal muscles of ALS mice. METHODS: SOD1G93A mice (n = 6 per group) were used as the ALS model, and wild-type B6SJL (WT) mice as controls (n = 6). Mice with ALS were analyzed before the onset of ALS (ALS BEFORE), at baseline ALS (first disease symptoms, trained and untrained, ALS ONSET), and at the end of ALS (last stage disease, trained and untrained, ALS TERMINAL). Copper concentrations and the level of copper metabolism proteins in the skeletal muscles of the lower leg were determined. RESULTS: ALS disease caused a reduction in the copper concentration in ALS TERMINAL untrained mice compared with the ALS BEFORE (10.43 ± 1.81 and 38.67 ± 11.50 µg/mg, respectively, p = .0213). The copper chaperon for SOD1 protein, which supplies copper to SOD1, and ATPase7a protein (copper exporter), increased at the terminal stage of disease by 57% (p = .0021) and 34% (p = .0372), while the CTR1 protein (copper importer) decreased by 45% (p = .002). Swim training moderately affected the copper concentration and the concentrations of proteins responsible for copper metabolism in skeletal muscles. DISCUSSION: The results show disturbances in skeletal muscle copper metabolism associated with ALS progression, which is moderately affected by swim training. From a clinical point of view, exercise in water for ALS patients should be an essential element of rehabilitation for maintaining quality of life.

2.
Front Immunol ; 15: 1398468, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100660

RESUMO

Introduction: Heme oxygenase-1 (HO-1) is a stress-inducible heat shock protein (HSP32) that exerts cytoprotective effects against oxidative stress and inflammation, and is involved in the maintenance of cellular homeostasis. This study aimed to evaluate the expression of HO-1 in natural killer (NK) cells from individuals of different age groups after stimulation with various factors, and to analyze the relationships between the concentration of this cytoprotective protein and parameters corresponding to oxidative stress and inflammation, that is, NOD-like receptor protein 3 (NLRP3), glutathione (GSH), GSH disulfide (GSSG), and interleukin 6 (IL-6). Methods: The study population comprised three age groups: young adults (age range, 19-23 years), older adults aged under 85 years (age range, 73-84 years), and older adults aged over 85 years (age range, 85-92 years). NLRP3, GSH, and GSSG concentrations were measured in serum, whereas the HO-1 concentration and IL-6 expression were studied in NK cells cultivated for 48 h and stimulated with IL-2, lipopolysaccharide (LPS), or phorbol 12-myristate 13-acetate (PMA) with ionomycin. Results: The analysis of serum NLRP3, GSH, and GSSG concentrations revealed no statistically significant differences among the studied age groups. However, some typical trends of aging were observed, such as a decrease in GSH concentration and an increase in both GSSG level, and GSSG/GSH ratio. The highest basal expression of IL-6 and lowest basal content of HO-1 were found in NK cells of adults over 85 years of age. The NK cells in this age group also showed the highest sensitivity to stimulation with the applied factors. Moreover, statistically significant negative correlations were observed between HO-1 and IL-6 expression levels in the studied NK cells. Conclusions: These results showed that NK cells can express HO-1 at a basal level, which was significantly increased in activated cells, even in the oldest group of adults. The reciprocal relationship between HO-1 and IL-6 expression suggests a negative feedback loop between these parameters.


Assuntos
Envelhecimento , Heme Oxigenase-1 , Células Matadoras Naturais , Estresse Oxidativo , Humanos , Heme Oxigenase-1/metabolismo , Envelhecimento/imunologia , Idoso de 80 Anos ou mais , Idoso , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Adulto Jovem , Feminino , Glutationa/metabolismo , Interleucina-6/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Adulto
3.
Nutrients ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931198

RESUMO

This review offers a comprehensive evaluation of current aspects related to nutritional strategies, brain modulation, and muscle recovery, focusing on their applications and the underlying mechanisms of physiological adaptation for promoting a healthy brain, not only in athletes but also for recreationally active and inactive individuals. We propose that applying the rule, among others, of good sleep, regular exercise, and a properly balanced diet, defined as "SPARKS", will have a beneficial effect on the function and regeneration processes of the gut-brain-muscle axis. However, adopting the formula, among others, of poor sleep, stress, overtraining, and dysbiosis, defined as "SMOULDER", will have a detrimental impact on the function of this axis and consequently on human health as well as on athletes. Understanding these dynamics is crucial for optimizing brain health and cognitive function. This review highlights the significance of these factors for overall well-being, suggesting that adopting the "SPARKS" approach may benefit not only athletes but also older adults and individuals with health conditions.


Assuntos
Atletas , Desempenho Atlético , Encéfalo , Humanos , Encéfalo/fisiologia , Desempenho Atlético/fisiologia , Exercício Físico/fisiologia , Sono/fisiologia , Cognição/fisiologia , Eixo Encéfalo-Intestino/fisiologia , Fenômenos Fisiológicos da Nutrição Esportiva , Dieta , Microbioma Gastrointestinal/fisiologia
4.
J Mol Med (Berl) ; 102(3): 379-390, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38197966

RESUMO

Amyotrophic lateral sclerosis (ALS) may result from the dysfunctions of various mechanisms such as protein accumulation, mitophagy, and biogenesis of mitochondria. The purpose of the study was to evaluate the molecular mechanisms in ALS development and the impact of swim training on these processes. In the present study, an animal model of ALS, SOD1-G93A mice, was used with the wild-type mice as controls. Mice swam five times per week for 30 min. Mice were analyzed before ALS onset (70 days old), at ALS 1 disease onset (116 days old), and at the terminal stage of the disease ALS (130 days old), and compared with the corresponding ALS untrained groups and normalized to the wild-type group. Enzyme activity and protein content were analyzed in the spinal cord homogenates. The results show autophagy disruptions causing accumulation of p62 accompanied by low PGC-1α and IGF-1 content in the spinal cord of SOD1-G93A mice. Swim training triggered a neuroprotective effect, attenuation of NF-l degradation, less accumulated p62, and lower autophagy initiation. The IGF-1 pathway induces pathophysiological adaptation to maintain energy demands through anaerobic metabolism and mitochondrial protection. KEY MESSAGES: The increased protein content of p62 in the spinal cord of SOD1-G93A mice suggests that autophagic clearance and transportation are disrupted. Swim training attenuates neurofilament light destruction in the spinal cord of SOD1-G93A mice. Swim training reducing OGDH provokes suppression of ATP-consuming anabolic pathways. Swim training induces energy metabolic changes and mitochondria protection through the IGF-1 signaling pathway.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Autofagia , Modelos Animais de Doenças , Metabolismo Energético , Fator de Crescimento Insulin-Like I , Camundongos Transgênicos , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
5.
Front Nutr ; 10: 1256226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885441

RESUMO

Introduction: Mixed Martial Arts (MMA) is characterized as an interval sport in which the training program focuses on enhancing both aerobic and anaerobic capacities. Therefore, strategies targeting the intestinal microbiome may be beneficial for MMA athletes. Moreover, vitamin D supplementation may amplify the positive effects of certain bacterial strains. We previously demonstrated that the combined of probiotics and vitamin D3 supplementation improved the lactate utilization ratio, total work, and average power achieved during anaerobic tests in MMA. Therefore, this study aimed to investigate whether combined probiotic and vitamin D3 ingestion can modify the composition of the gut microbiome and epithelial cell permeability, influence the inflammatory response, and ultimately enhance aerobic capacity. Methods: A 4-week clinical trial was conducted with 23 male MMA athletes randomly assigned to either the probiotic + vitamin D3 (PRO + VIT D) group or the vitamin D3 group (VIT D). The trial employed a double-blind, placebo-controlled design and involved measurements of serum inflammatory markers, gut microbiome composition, epithelial cell permeability, and aerobic performance. Results: After 4-week of supplementation, we found a significantly lower concentration of calprotectin in the PRO + VIT D group (34.79 ± 24.38 mmol/L) compared to the value before (69.50 ± 46.91) supplementation (p = 0.030), augmentation of beta diversity after the intervention in the PRO + VIT D group (p = 0.0005) and an extended time to exhaustion to 559.00 ± 68.99; compared to the value before (496.30 ± 89.98; p = 0.023) after combined probiotic and vitamin D3 supplementation in MMA athletes. No effect was observed in the VIT D group. Conclusion: Our results indicate that combined treatment of probiotics and vitamin D3 may cause alterations in alpha and beta diversity and the composition of the gut microbiota in MMA athletes. We observed an improvement in epithelial cell permeability and an extended time to exhaustion during exercise in MMA athletes following a 4-week combined probiotic and vitamin D3 treatment.

6.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762245

RESUMO

Dexamethasone (DEXA) is a commonly used steroid drug with immunosuppressive and analgesic properties. Unfortunately, long-term exposure to DEXA severely impairs brain function. This study aimed to investigate the effects of vitamin D3 supplementation during chronic DEXA treatment on neurogenesis, mitochondrial energy metabolism, protein levels involved in the BDNF-mediated Akt activity, and specific receptors in the hippocampus. We found reduced serum concentrations of 25-hydroxyvitamin D3 (25(OH)D3), downregulated proBDNF and pAkt, dysregulated glucocorticosteroid and mineralocorticoid receptors, impaired mitochondrial biogenesis, and dysfunctional mitochondria energy metabolism in the DEXA-treated group. In contrast, supplementation with vitamin D3 restored the 25(OH)D3 concentration to a value close to that of the control group. There was an elevation in neurotrophic factor protein level, along with augmented activity of pAkt and increased citrate synthase activity in the hippocampus after vitamin D3 administration in long-term DEXA-treated rats. Our findings demonstrate that vitamin D3 supplementation plays a protective role in the hippocampus and partially mitigates the deleterious effects of long-term DEXA administration. The association between serum 25(OH)D3 concentration and BDNF level in the hippocampus indicates the importance of applying vitamin D3 supplementation to prevent and treat pathological conditions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Hipocampo , Calcifediol , Colecalciferol/farmacologia , Mitocôndrias , Suplementos Nutricionais , Dexametasona/efeitos adversos
7.
Nutrients ; 15(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686871

RESUMO

The current study aimed to investigate whether a 12-week Body Mass Index (BMI)-based (the higher the BMI, the higher the dosage) vitamin D3 administration may affect both the kynurenine pathway (KP) and the inflammatory state in Parkinson's disease (PD) patients with deep brain stimulation (DBS) and may be useful for developing novel therapeutic targets against PD. Patients were randomly assigned to two groups: supplemented with vitamin D3 (VitD, n = 15) and treated with vegetable oil (PL, n = 21). Administration lasted for 12 weeks. The isotope dilution method by LC-MS/MS was applied to measure KP and vitamin D metabolites. Serum concentrations of cytokines such as IL-6 and TNF-α were measured using ELISA kits. After administration, the serum concentration of TNF-α decreased in PD patients with DBS. Moreover, in KP: 3-hydroksykynurenine (3-HK) was increased in the PL group, picolinic acid was decreased in the PL group, and kynurenic acid tended to be higher after administration. Furthermore, a negative correlation between 3-HK and 25(OH)D3 and 24,25(OH)2D3 was noticed. Our preliminary results provide further evidence regarding a key link between the KP substances, inflammation status, and metabolites of vitamin D in PD patients with DBS. These findings may reflect the neuroprotective abilities of vitamin D3 in PD patients with DBS.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Colecalciferol , Cinurenina , Cromatografia Líquida , Doença de Parkinson/terapia , Fator de Necrose Tumoral alfa , Espectrometria de Massas em Tandem , Vitamina D , Vitaminas
8.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373347

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease. To manage motor symptoms not controlled adequately with medication, deep brain stimulation (DBS) is used. PD patients often manifest vitamin D deficiency, which may be connected with a higher risk of falls. We administered a 12-week vitamin D3 supplementation based on BMI (with higher doses given to patients with higher BMI) to investigate its effects on physical performance and inflammation status in PD patients with DBS. Patients were randomly divided into two groups: treated with vitamin D3 (VitD, n = 13), and supplemented with vegetable oil as the placebo group (PL, n = 16). Patients underwent functional tests to assess their physical performance three times during this study. The serum 25(OH)D3 concentration increased to the recommended level of 30 ng/mL in the VitD group, and a significant elevation in vitamin D metabolites in this group was found. We observed significant improvement in the Up and Go and the 6 MWT in the VitD group. In inflammation status, we noticed a trend toward a decrease in the VitD group. To conclude, achieving the optimal serum 25(OH)D3 concentration is associated with better functional test performance and consequently may have a positive impact on reducing falling risk in PD.


Assuntos
Estimulação Encefálica Profunda , Doenças Neurodegenerativas , Doença de Parkinson , Deficiência de Vitamina D , Humanos , Colecalciferol , Doença de Parkinson/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Índice de Massa Corporal , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Suplementos Nutricionais , Deficiência de Vitamina D/tratamento farmacológico , Inflamação/tratamento farmacológico
9.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176100

RESUMO

Klotho is a beta-glucuronidase that reveals both anti-inflammatory and anti-oxidative properties that have been associated with mechanisms of aging. The study aimed to analyze the relationships between the serum concentration of soluble α-Klotho and cellular activity of two populations of lymphocytes; T and NKT-like cells corresponding to the level of cytokine secretion; i.e., IFN-γ, TNF-α, and IL-6. The studied population comprised three age groups: young individuals ('young'), seniors aged under 85 ('old'), and seniors aged over 85 ('oldest'). Both NKT-like and T cells were either non-cultured or cultured for 48 h and stimulated appropriately with IL-2, LPS or PMA with ionomycin to compare with unstimulated control cells. In all studied age groups non-cultured or cultured NKT-like cells revealed higher expressions of TNF-α, IL-6, and IFN-γ than T cells. α-Klotho concentration in serum decreased significantly in the process of aging. Intriguingly, only IFN-γ expression revealed a positive correlation with α-Klotho protein serum concentration in both non-cultured and cultured T and NKT-like cells. Since IFN-γ is engaged in the maintenance of immune homeostasis, the observed relationships may indicate the involvement of α-Klotho and cellular IFN-γ expression in the network of adaptive mechanisms developed during the process of human aging.


Assuntos
Interferon gama , Linfócitos T , Idoso , Humanos , Envelhecimento , Anti-Inflamatórios/farmacologia , Células Cultivadas , Interferon gama/metabolismo , Interleucina-6 , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Klotho/metabolismo
10.
Sports Med Open ; 9(1): 31, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193828

RESUMO

BACKGROUND: Strategies targeted at the intestine microbiome seem to be beneficial for professional athletes. The gut-muscle axis is associated with the inflammatory state, glucose metabolism, mitochondrial function, and central nervous system health. All these mechanisms may affect maximal oxygen uptake, muscle strength, and training adaptation. Moreover, the positive effect of certain bacterial strains may be enhanced by vitamin D. Thus, this study aimed to assess and compare the level of selected markers of sports performance of mixed martial arts (MMA) athletes supplemented with vitamin D3 or probiotics combined with vitamin D3. METHODS: A 4-week randomized double-blind placebo-controlled clinical trial was conducted with 23 MMA male athletes assigned to the vitamin D3 group (Vit D; n = 12) or probiotics + vitamin D3 group (PRO + VitD; n = 11). Repeated measures of the creatine kinase level, lactate utilization ratio, and anaerobic performance were conducted. RESULTS: After 4 weeks of supplementation, we found lower lactate concentrations 60 min after the acute sprint interval in the PRO + VitD group when compared to the Vit D group (4.73 ± 1.62 and 5.88 ± 1.55 mmol/L; p < 0.05). In addition, the intervention improved the total work (232.00 ± 14.06 and 240.72 ± 13.38 J kg-1; p < 0.05), and mean power following the anaerobic exercise protocol (7.73 ± 0.47 and 8.02 ± 0.45 W kg-1; p < 0.05) only in the PRO + VitD group. Moreover, there was an improvement in the lactate utilization ratio in the PRO + VitD group compared with the Vit D group as shown by the percentage of T60/T3 ratio (73.6 ± 6.9 and 65.1 ± 9.9%, respectively; p < 0.05). We also observed elevated serum 25(OH)D3 concentrations after acute sprint interval exercise in both groups, however, there were no significant differences between the groups. CONCLUSION: Four weeks of combined probiotic and vitamin D3 supplementation enhanced lactate utilization and beneficially affected anaerobic performance in MMA athletes.

11.
Sci Rep ; 13(1): 8596, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237034

RESUMO

The study aimed to evaluate the impact of selected exerkines concentration induced by folk-dance and balance training on physical performance, insulin resistance, and blood pressure in older adults. Participants (n = 41, age 71.3 ± 5.5 years) were randomly assigned to folk-dance (DG), balance training (BG), or control group (CG). The training was performed 3 times a week for 12 weeks. Physical performance tests-time up and go (TUG) and 6-min walk test (6MWT), blood pressure, insulin resistance, and selected proteins induced by exercise (exerkines) were assessed at baseline and post-exercise intervention. Significant improvement in TUG (p = 0.006 for BG and 0.039 for DG) and 6MWT tests (in BG and DG p = 0.001), reduction of systolic blood pressure (p = 0.001 for BG and 0.003 for DG), and diastolic blood pressure (for BG; p = 0.001) were registered post-intervention. These positive changes were accompanied by the drop in brain-derived neurotrophic factor (p = 0.002 for BG and 0.002 for DG), the increase of irisin concentration (p = 0.029 for BG and 0.022 for DG) in both groups, and DG the amelioration of insulin resistance indicators (HOMA-IR p = 0.023 and QUICKI p = 0.035). Folk-dance training significantly reduced the c-terminal agrin fragment (CAF; p = 0.024). Obtained data indicated that both training programs effectively improved physical performance and blood pressure, accompanied by changes in selected exerkines. Still, folk-dance had enhanced insulin sensitivity.


Assuntos
Dança , Resistência à Insulina , Humanos , Idoso , Desempenho Físico Funcional , Homeostase , Glucose
12.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232801

RESUMO

In this study, we aim to verify whether swim training can improve lactate metabolism, NAD+ and NADH levels, as well as modify the activity of glycolytic and NADH shuttle enzymes and monocarboxylate transporters (MCTs) in skeletal muscle of amyotrophic lateral sclerosis (ALS) mice. ALS mice (SOD1G93A) (n = 7 per group) were analyzed before the onset of ALS, at first disease symptoms (trained and untrained), and the last stage of disease (trained and untrained), and then compared with a wild-type (WT) group of mice. The blood lactate and the skeletal muscle concentration of lactate, NAD+ and NADH, MCT1 and MCT4 protein levels, as well as lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in skeletal muscle were determined by fluorometric, Western blotting, liquid chromatography-MS3 spectrometry, and spectrometric methods. In the untrained terminal ALS group, there were decreased blood lactate levels (p < 0.001) and increased skeletal muscle lactate levels (p < 0.05) as compared with a WT group of mice. The amount of nicotinamide adenine dinucleotides in the ALS groups were also significantly reduced as well as LDH activity and the level of MCT1. Swim training increased lactate levels in the blood (p < 0.05 vs. ALS TERMINAL untrained). In addition, cytosolic MDH activity and the cMDH/LDH 2.1 ratio were significantly higher in trained vs. untrained mice (p < 0.05). The data indicate significant dysfunction of lactate metabolism in ALS mice, associated with a reduction in muscle anaerobic metabolism and NADH transporting enzymes, as well as swim-induced compensation of energy demands in the ALS mice.


Assuntos
Esclerose Lateral Amiotrófica , NAD , Adenina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Ácido Láctico/metabolismo , Malato Desidrogenase/metabolismo , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Músculo Esquelético/metabolismo , NAD/metabolismo , Niacinamida/metabolismo
13.
Front Physiol ; 13: 809363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514345

RESUMO

The study aimed to evaluate if the 25(OH)D concentration is related to physical training responses. Moreover, to determine the association between serum 25(OH)D concentration and older women's physical performance, oxidative stress markers, inflammation, and bone metabolism. 37 older women (age 72.9 ± 5.2 years) were assigned into two groups: supplemented (SG) and non-supplemented (NSG). Then, the participants from SG and NSG were randomly assigned into exercised and non-exercised groups: exercise sufficient vitamin D group (ESD; n = 10), exercise insufficient vitamin D group (EID; n = 9), control sufficient vitamin D group (CSD; n = 9), and control insufficient vitamin D group (CID; n = 9). To assess the study aims time up and go test (TUG), 6 min walk test (6MWT), fall risk test (FRT), blood osteocalcin (OC), parathormone (PTH), calcium (Ca2+), sulfhydryl groups (SH), malondialdehyde (MDA), and interleukin-6 (IL-6) were performed. The results showed that a higher 25(OH)D concentration was in line with better physical performance and bone metabolism as well as lower inflammation. After 12 weeks of training we noted an improvement in 6MWT (from 374.0 ± 17.3 to 415.0 ± 18.8; p = 0.001 and from 364.8 ± 32.8 to 419.4 ± 32.3; p = 0.001 for EID and ESD, respectively), TUG (from 7.9 ± 0.5 to 6.8 ± 0.8; p = 0.001 and from 7.3 ± 1.5 to 6.4 ± 0.9; p = 0.002, for EID and ESD, respectively), reduction of fall risk (from 2.8 ± 0.8 to 1.9 ± 0.4; p = 0.003 and from 2.1 ± 1.1 to 1.6 ± 0.5; p = 0.047, for EID and ESD, respectively) and increase in SH groups (from 0.53 ± 0.06 to 0.58 ± 0.08; p = 0.012 and from 0.54 ± 0.03 to 0.59 ± 0.04; p = 0.005, for EID and ESD, respectively), regardless of the baseline 25(OH)D concentration. A decrease in PTH and OC concentration was observed only in EID group (from 57.7 ± 15.7 to 49.4 ± 12.6; p = 0.013 for PTH and from 27.9 ± 17.2 to 18.0 ± 6.2; p = 0.004 for OC). To conclude, vitamin D concentration among older women is associated with physical performance, fall risk, inflammation, and bone metabolism markers. Moreover, 12 weeks of training improved physical performance and antioxidant protection, regardless of baseline vitamin D concentration.

14.
Sci Rep ; 12(1): 1825, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115578

RESUMO

Vitamin D is necessary for musculoskeletal health, however, the supplementation of vitamin D above the sufficiency level does not bring additional bone mass density (BMD), unlike physical exercise which enhances the bone formatting process. Regular physical activity has been shown to upregulate VDR expression in muscles and to increase circulating vitamin D. Here we investigate whether a single bout of exercise might change 25(OH)D3 blood concentration and how it affects metabolic response to exercise. Twenty-six boys, 13.8 years old (SD ± 0.7) soccer players, participated in the study. The participants performed one of two types of exercise: the first group performed the VO2max test until exhaustion, and the second performed three times the repeated 30 s Wingate Anaerobic Test (WAnT). Blood was collected before, 15 min and one hour after the exercise. The concentration of 25(OH)D3, parathyroid hormone (PTH), interleukin-6 (IL-6), lactate, non-esterified fatty acids (NEFA) and glycerol were determined. 25(OH)D3 concentration significantly increased after the exercise in all boys. The most prominent changes in 25(OH)D3, observed after WAnT, were associated with the rise of PTH. The dimensions of response to the exercises observed through the changes in the concentration of 25(OH)D3, PTH, NEFA and glycerol were associated with the significant increases of IL-6 level. A single bout of exercise may increase the serum's 25(OH)D3 concentration in young trained boys. The intensive interval exercise brings a more potent stimulus to vitamin D fluctuations in young organisms. Our results support the hypothesis that muscles may both store and release 25(OH)D3.


Assuntos
Calcifediol/sangue , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Hormônio Paratireóideo/sangue , Aptidão Física/fisiologia , Adolescente , Atletas , Ácidos Graxos não Esterificados/sangue , Glicerol/sangue , Humanos , Interleucina-6/sangue , Ácido Láctico/sangue , Masculino , Projetos Piloto , Testes de Função Respiratória
15.
Exp Gerontol ; 162: 111746, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217193

RESUMO

BACKGROUND: The study aimed to compare the effectiveness of 12-weeks dance training with balance training on fall risk, physical and cognitive functions. The study's second aim was to evaluate the association between physical and cognitive functions with circulating markers of neurodegeneration and cognitive impairments in elders. MATERIALS AND METHODS: 30 older women (aged 73.3 ± 4.5) were randomly assigned into three groups: balance training (BG), dance training (DG) and control group (CG). To assess the study aims Time up and go test (TUG), 6 minute walk test (6MWT), determination test (DT), blood amyloid precursor protein (APP) and serotonin concentration were performed. RESULTS: The results showed an improvement in 6MWT (p = 0.0001 for DG and BD), walking speed (p = 0.0001 for DG and BG) and TUG, only for DG (p = 0.0013). The number of correct responses in DT increased in both groups (p = 0.014 and p = 0.005, for DG and BG, respectively). In DG the increase in the total number of reactions was observed (p = 0.013). The improvement in cognitive and physical functions was associated with an increase in APP (p = 0.036 and p = 0.014) and a decrease in serotonin concentrations (p = 0.042 and p = 0.049), respectively in DG and BG. CONCLUSION: Dance training intervention could have more benefits on elders' physical and cognitive functions. However, both trainings may be important factors modifying the concentration of circulating proteins associated with neurodegenerative and cognitive disorders.


Assuntos
Precursor de Proteína beta-Amiloide , Dança , Idoso , Cognição/fisiologia , Dança/fisiologia , Feminino , Humanos , Equilíbrio Postural/fisiologia , Serotonina , Estudos de Tempo e Movimento
16.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054933

RESUMO

This study investigates the effect of Dexamethasone (Dex) treatment on blood and skeletal muscle metabolites level and skeletal muscle activity of enzymes related to energy metabolism after long-duration swimming. To evaluate whether Dex treatment, swimming, and combining these factors act on analyzed data, rats were randomly divided into four groups: saline treatment non-exercise and exercise and Dex treatment non-exercised and exercised. Animals in both exercised groups underwent long-lasting swimming. The concentration of lipids metabolites, glucose, and lactate were measured in skeletal muscles and blood according to standard colorimetric and fluorimetric methods. Also, activities of enzymes related to aerobic and anaerobic metabolism were measured in skeletal muscles. The results indicated that Dex treatment induced body mass loss and increased lipid metabolites in the rats' blood but did not alter these changes in skeletal muscles. Interestingly, prolonged swimming applied after 9 days of Dex treatment significantly intensified changes induced by Dex; however, there was no difference in skeletal muscle enzymatic activities. This study shows for the first time the cumulative effect of exercise and Dex on selected elements of lipid metabolism, which seems to be essential for the patient's health due to the common use of glucocorticoids like Dex.


Assuntos
Dexametasona/farmacologia , Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Natação , Animais , Biomarcadores , Glucose/metabolismo , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Metabolismo dos Lipídeos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Ratos , Estresse Fisiológico , Fatores de Tempo
17.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769048

RESUMO

(1) Background: Amyotrophic lateral sclerosis (ALS) is an incurable, neurodegenerative disease. In some cases, ALS causes behavioral disturbances and cognitive dysfunction. Swimming has revealed a neuroprotective influence on the motor neurons in ALS. (2) Methods: In the present study, a SOD1-G93A mice model of ALS were used, with wild-type B6SJL mice as controls. ALS mice were analyzed before ALS onset (10th week of life), at ALS 1 onset (first symptoms of the disease, ALS 1 onset, and ALS 1 onset SWIM), and at terminal ALS (last stage of the disease, ALS TER, and ALS TER SWIM), and compared with wild-type mice. Swim training was applied 5 times per week for 30 min. All mice underwent behavioral tests. The spinal cord was analyzed for the enzyme activities and oxidative stress markers. (3) Results: Pre-symptomatic ALS mice showed increased locomotor activity versus control mice; the swim training reduced these symptoms. The metabolic changes in the spinal cord were present at the pre-symptomatic stage of the disease with a shift towards glycolytic processes at the terminal stage of ALS. Swim training caused an adaptation, resulting in higher glutathione peroxidase (GPx) and protection against oxidative stress. (4) Conclusion: Therapeutic aquatic activity might slow down the progression of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Glutationa Peroxidase/metabolismo , Locomoção/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/metabolismo , Natação/fisiologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Masculino , Camundongos , Camundongos Transgênicos/metabolismo , Camundongos Transgênicos/fisiologia , Microglia/metabolismo , Microglia/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Estresse Oxidativo/fisiologia , Medula Espinal/fisiopatologia , Superóxido Dismutase/metabolismo
18.
Sci Rep ; 11(1): 20899, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686697

RESUMO

We tested the hypothesis that swim training reverses the impairment of Akt/FOXO3a signaling, ameliorating muscle atrophy in ALS mice. Transgenic male mice B6SJL-Tg (SOD1G93A) 1Gur/J were used as the ALS model (n = 35), with wild-type B6SJL (WT) mice as controls (n = 7). ALS mice were analyzed before ALS onset, at ALS onset, and at terminal ALS. Levels of insulin/Akt signaling pathway proteins were determined, and the body and tibialis anterior muscle mass and plasma creatine kinase. Significantly increased levels of FOXO3a in ALS groups (from about 13 to 21-fold) compared to WT mice were observed. MuRF1 levels in the ONSET untrained group (12.0 ± 1.7 AU) were significantly higher than in WT mice (1.12 ± 0.2 AU) and in the BEFORE ALS group (3.7 ± 0.9 AU). This was associated with body mass and skeletal muscle mass reduction. Swim training significantly ameliorated the reduction of skeletal muscle mass in both TERMINAL groups (p < 0.001) and partially reversed changes in the levels of Akt signaling pathway proteins. These findings shed light on the swimming-induced attenuation of skeletal muscle atrophy in ALS with possible practical implications for anti-cachexia approaches.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Músculo Esquelético/fisiologia , Atrofia Muscular/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Natação/fisiologia , Animais , Modelos Animais de Doenças , Proteína Forkhead Box O3/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Superóxido Dismutase-1/metabolismo , Proteínas com Motivo Tripartido/metabolismo
19.
Aging Dis ; 12(7): 1605-1623, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34631210

RESUMO

From year to year, we know more about neurodegeneration and Parkinson's disease (PD). A positive influence of various types of physical activity is more often described in the context of neuroprotection and prevention as well as the form of rehabilitation in Parkinson's patients. Moreover, when we look at supplementation, clinical nutrition and dietetics, we will see that balancing consumed products and supplementing the vitamins or minerals is necessary. Considering the biochemical pathways in skeletal muscle, we may see that many researchers desire to identify molecular mediators that have an impact through exercise and balanced diet on human health or development of the neurodegenerative disease. Therefore, it is mandatory to study the potential mechanism(s) related to diet and factors resulted from physical activity as molecular mediators, which play a therapeutic role in PD. This review summarizes the available literature on mechanisms and specific pathways involved in diet-exercise relationship and discusses how therapy, including appropriate exercises and diet that influence molecular mediators, may significantly slow down the progress of neurodegenerative processes. We suggest that a proper diet combined with physical activity will be a good solution for psycho-muscle BALANCE not only in PD but also in other neurodegenerative diseases.

20.
Nutrients ; 13(3)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799389

RESUMO

(1) The study aimed to investigate whether vitamin D3 supplementation would positively affect rats with glucocorticoids-induced muscle atrophy as measured by skeletal muscle mass in two experimental conditions: chronic dexamethasone (DEX) administration and a model of the chronic stress response. (2) The study lasted 28 consecutive days and was performed on 45 male Wistar rats randomly divided into six groups. These included two groups treated by abdominal injection of DEX at a dose of 2 mg/kg/day supplemented with vegetable oil (DEX PL; n = 7) or with vitamin D3 600 IU/kg/day (DEX SUP; n = 8), respectively, and a control group treated with an abdominal injection of saline (CON; n = 6). In addition, there were two groups of rats chronically stressed by cold water immersion (1 hour/day in a glass box with 1-cm-deep ice/water mixture; temperature ~4 °C), which were supplemented with vegetable oil as a placebo (STR PL; n = 9) or vitamin D3 at 600 IU/kg/day (STR SUP; n = 9). The last group was of sham-stressed rats (SHM; n = 6). Blood, soleus, extensor digitorum longus, gastrocnemius, tibialis anterior, and quadriceps femoris muscles were collected and weighed. The heart, liver, spleen, and thymus were removed and weighed immediately after sacrifice. The plasma corticosterone (CORT) and vitamin D3 metabolites were measured. (3) We found elevated CORT levels in both cold water-immersed groups; however, they did not alter body and muscle weight. Body weight and muscle loss occurred in groups with exogenously administered DEX, with the exception of the soleus muscle in rats supplemented with vitamin D3. Decreased serum 25(OH)D3 concentrations in DEX-treated rats were observed, and the cold water immersion did not affect vitamin D3 levels. (4) Our results indicate that DEX-induced muscle loss was abolished in rats supplemented with vitamin D3, especially in the soleus muscle.


Assuntos
Colecalciferol/uso terapêutico , Glucocorticoides/administração & dosagem , Atrofia Muscular/tratamento farmacológico , Vitaminas/uso terapêutico , Animais , Modelos Animais de Doenças , Masculino , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/induzido quimicamente , Ratos , Ratos Wistar , Resultado do Tratamento , Vitamina D
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA